留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低次数疲劳加载下短切钢纤维对碳纤维织物增强混凝土力学性能的影响

朱德举 唐昊

朱德举, 唐昊. 低次数疲劳加载下短切钢纤维对碳纤维织物增强混凝土力学性能的影响[J]. 复合材料学报, 2023, 40(11): 6260-6274. doi: 10.13801/j.cnki.fhclxb.20230222.002
引用本文: 朱德举, 唐昊. 低次数疲劳加载下短切钢纤维对碳纤维织物增强混凝土力学性能的影响[J]. 复合材料学报, 2023, 40(11): 6260-6274. doi: 10.13801/j.cnki.fhclxb.20230222.002
ZHU Deju, TANG Hao. Influence of short steel fiber on mechanical properties of carbon textile reinforced concrete under low-cycle fatigue loading[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6260-6274. doi: 10.13801/j.cnki.fhclxb.20230222.002
Citation: ZHU Deju, TANG Hao. Influence of short steel fiber on mechanical properties of carbon textile reinforced concrete under low-cycle fatigue loading[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6260-6274. doi: 10.13801/j.cnki.fhclxb.20230222.002

低次数疲劳加载下短切钢纤维对碳纤维织物增强混凝土力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20230222.002
基金项目: 国家自然科学基金山东联合基金项目(U1806225)
详细信息
    通讯作者:

    朱德举,博士,教授,博士生导师,研究方向为高性能纤维/织物增强水泥基和树脂基复合材料、高耐久纤维复材筋增强海水海砂混凝土材料及结构 、生物材料多尺度力学行为及仿生 E-mail: dzhu@hnu.edu.cn

  • 中图分类号: TB332;TU599

Influence of short steel fiber on mechanical properties of carbon textile reinforced concrete under low-cycle fatigue loading

Funds: National Natural Science Foundation of China-Shandong Joint Fund (U1806225)
  • 摘要: 为了研究低次数疲劳加载下短切钢纤维对碳纤维织物增强混凝土(C-TRC)力学性能的影响,通过万能试验机对不同短切钢纤维掺量(0vol%、0.5vol%、1.0vol%)的试件进行低次数疲劳加载实验和疲劳加载前后的准静态拉伸试验,并结合数字图像相关分析得到拉伸状态下裂纹与应变分布。结果表明:添加短切钢纤维能够增大C-TRC的拉伸强度、杨氏模量和韧性,降低试件的能量耗散及剩余累积应变,增加裂纹条数和裂纹宽度。疲劳荷载能够降低C-TRC的刚度、极限强度、峰值应变及韧性,加快C-TRC的破坏。添加短切纤维能够降低疲劳加载造成的性能损耗,且0.5vol%掺量的增强效果最佳。基于现有的剩余强度-剩余刚度关联模型和实验数据,改进了强度退化模型,对实验数据进行拟合并与现有模型进行对比,其结果与实验数据吻合更好。该成果对于织物增强混凝土(TRC)疲劳性能的评价具有指导意义。

     

  • 图  1  碳纤维织物

    Figure  1.  Carbon textile

    图  2  短切钢纤维

    Figure  2.  Short steel fiber

    图  3  碳纤维织物混凝土(C-TRC)拉伸试件

    Figure  3.  Tensile specimen of carbon textile reinforced concrete (C-TRC)

    图  4  球铰连接的拉伸夹具

    Figure  4.  Tensile fixtures connected by ball joint

    图  5  疲劳荷载谱

    Smax and Smin—Maximum and minimun fatigue stress; σmax—Determined failure stress from the monotonous tensile tests; Sm—Average fatigue stress; Sa—Stress amplitude; T—Cycle period

    Figure  5.  Fatigue load spectrum

    图  6  低次数疲劳加载作用下C-TRC拉伸应力-应变曲线

    N—Cycle index; E+ and E—Upward Young's modulus and downward Young's modulus; σsmin and σsmax—Minimum and maximum stress in a single cycle; εsmin—Minimum strain in a single cycle; Bi—Minimum stress point in the ith cycle; Ai and Ai+1—Maximum stress point in the ith and (i+1)th cycle; εsmax_1 and εsmax_2—Maximum strain in the ith and (i+1)th cycle

    Figure  6.  Tensile stress-strain curves of C-TRC subjected to low-cycle fatigue loading

    图  7  低次数疲劳加载作用下C-TRC疲劳力学性能变化

    Ediss—Dissipated energy

    Figure  7.  Variations in fatigue mechanical properties of C-TRC subjected to low-cycle fatigue loading

    图  8  低次数疲劳加载作用下C-TRC主裂纹宽度变化

    Figure  8.  Variations in width of the major crack of C-TRC subjected to low-cycle fatigue loading

    图  9  短切钢纤维掺量对C-TRC裂纹宽度影响(第100次循环)

    Figure  9.  Influence of short steel fiber contents on crack width of C-TRC (100th cycle)

    图  10  C-TRC裂纹宽度对比(第100次循环)

    Figure  10.  Comparison of the crack width of C-TRC (100th cycle)

    图  11  低次数疲劳加载作用下C-TRC裂纹宽度的Mann-Kendall检验对比

    ZMK—Test statistic of Mann-Kendall' test; Zα/2(α=0.025)—Test statistic at the significance level of 0.5

    Figure  11.  Comparison of the Mann-Kendall' test results of the crack width of C-TRC subjected to low-cycle fatigue loading

    图  12  短切钢纤维掺量对C-TRC疲劳性能的影响(第100次循环)

    Figure  12.  Influence of short steel fiber contents on fatigue properties of C-TRC (100th cycle)

    图  13  C-TRC拉伸应力-应变曲线

    σT and σu—Cracking stress and peak stress; εT and εu—Cracking strain and peak strain; E—Elastic modulus

    Figure  13.  Tensile stress-strain curves of C-TRC

    图  14  疲劳加载前后C-TRC的拉伸力学性能对比

    Figure  14.  Comparison of the tensile mechanical properties of C-TRC before and after fatigue loading

    图  15  C-TRC剩余强度和剩余刚度的理论与试验结果对比

    Sr and Er—Residual strength and residual rigidity; S0 and E0—Initial strength and initial rigidity

    Figure  15.  Comparison of theoretical and experimental results of the residual strength and residual rigidity of C-TRC

    图  16  不同短切钢纤维掺量的C-TRC裂纹和应变分布

    Figure  16.  Crack and strain distribution of C-TRC with various contents of short steel fiber

    图  17  C-TRC典型破坏形态

    Figure  17.  Typical failure modes of C-TRC

    图  18  不同短切钢纤维掺量的C-TRC疲劳加载前后的裂纹数量和平均裂纹间距

    Figure  18.  Crack number and average crack spacing of C-TRC with various contents of short steel fiber before and after fatigue loading

    图  19  疲劳加载后C-TRC的破坏形态

    Figure  19.  Failure patterns of C-TRC after fatigue loading

    表  1  基体配合比设计

    Table  1.   Mix design of the matrix kg/m3

    Cement
    (P·O 42.5)
    Fly ashSilica fumeSand (0-0.6 mm)Sand (0.6-1.2 mm)SuperplasticizerWaterDefoamer
    712303654509014.43302.6
    下载: 导出CSV

    表  3  短切钢纤维的物理和力学性能参数

    Table  3.   Physical and mechanical parameters of short steel fiber

    Diameter/mmLength/
    mm
    Tensile strength
    /MPa
    Young's modulus
    /GPa
    Density
    /
    (g·cm−3)
    0.206-830152007.8
    下载: 导出CSV

    表  2  碳纤维织物的物理和力学性能参数

    Table  2.   Physical and mechanical parameters of carbon textile

    ModelTextile
    size/mm2
    Tex/
    (g·(1000 m)−1)
    Grammage/
    (g·cm−2)
    CoatingSection area of
    single yarn/mm2
    Tensile strength of
    single yarn/MPa
    Young's modulus of
    single yarn/GPa
    WarpWeftWarpWeftWarpWeft
    TC33-3 K5×5 270-3201.8Epoxy resin0.180.1634503100238216
    下载: 导出CSV

    表  4  C-TRC拉伸实验设计

    Table  4.   Experimental design for tensile tests of C-TRC

    SpecimenTextileLayers of textile${V_{\text{f}}}$/vol%
    Q0%CT/CCarbon20
    Q0.5%CT/CCarbon20.5
    Q1.0%CT/CCarbon21
    Notes: Q—Quasi-static tensile tests; 0%, 0.5%, 1.0%—Contents of short steel fiber are 0vol%, 0.5vol% and 1.0vol%; CT—Carbon textile; C—Concrete; ${V_{\text{f}}}$—Volume fraction of carbon textile.
    下载: 导出CSV

    表  5  C-TRC低次数疲劳加载试验设计

    Table  5.   Experimental design for low-cycle fatigue loading tests of C-TRC

    SpecimenTextileLayers of textileVf/vol%CycleStress level/%
    L0%CT/CCarbon201005-60
    L0.5%CT/CCarbon20.51005-60
    L1.0%CT/CCarbon211005-60
    Note: L—Low-cycle fatigue loading test.
    下载: 导出CSV

    表  6  不同短切钢纤维掺量的C-TRC的疲劳性能参数(第100次循环)

    Table  6.   Fatigue properties parameters of C-TRC with various contents of short steel fiber (100th cycle)

    Specimen$ {E}_{+} $
    /GPa

    E/GPa
    $ {E}_{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{s}} $
    /10–4 J

    Bi/%
    L0%CT/C2.042.045900.533
    L0.5%CT/C2.182.184530.493
    L1.0%CT/C2.102.114750.513
    下载: 导出CSV

    表  7  不同短切钢纤维掺量的C-TRC主裂纹出现时间和出现位置

    Table  7.   Occurrence time and location of major crack of C-TRC with various contents of short steel fiber

    SpecimenNO.1NO.2NO.3
    Occurrence timeLocation
    /mm
    Occurrence timeLocation
    /mm
    Occurrence timeLocation
    /mm
    L0%CT/CBefore fatigue loading43Before fatigue loading36Before fatigue loading42
    L0.5%CT/CBefore fatigue loading438th cycle44Before fatigue loading44
    L1.0%CT/CBefore fatigue loading36Before fatigue loading1516th cycle18
    下载: 导出CSV

    表  8  疲劳加载前后的C-TRC拉伸力学性能试验结果

    Table  8.   Test results of the tensile mechanical properties of C-TRC before and after fatigue loading

    Specimen
    Rigidity/
    GPa
    Reduction rate/%Tensile strength/MPaTensile load/
    kN
    Reduction rate/%Ultimate strain/%Reduction rate/%Toughness/
    (kJ·m−3)
    Reduction rate/%
    Q0%CT/C 24.40 11.20 5.04 1.23 87.78
    Q0.5%CT/C 24.60 12.90 5.81 1.40 106.89
    Q1.0%CT/C 22.30 14.20 6.39 1.37 110.67
    L0%CT/C 1.07 95.6 9.15 4.12 18.2 0.84 32.0 38.00 56.8
    L0.5%CT/C 1.75 92.9 11.40 5.13 11.8 1.13 19.3 66.67 37.7
    L1.0%CT/C 1.14 94.9 11.30 5.09 20.5 0.99 28.0 51.56 53.4
    下载: 导出CSV

    表  9  未添加短切钢纤维时C-TRC的剩余刚度-剩余强度关联模型参数与拟合结果

    Table  9.   Parameters of the residual strength-residual stiffness coupled model of C-TRC without short steel fiber and fitted results

    CycleEq. (8)R2Eq. (9)R2
    $ q $$ w $$ r $$ a $$ H $
    1000.001212.40.930.610.040.680.94
    2000.001414.10.950.740.070.540.93
    Average value0.001313.30.680.060.61
    Notes: q and w—Unknown parameters in Eq.(8); r, a, and H—Unknown parameters in Eq.(9); R2—Goodness of fit.
    下载: 导出CSV

    表  10  不同加载次数下的C-TRC的剩余强度和剩余刚度

    Table  10.   Residual strength and residual rigidity of C-TRC subjected to various loading cycles

    Stress level/
    %
    CycleNO.1NO.2NO.3
    Sr/S0
    /%
    Er/E0
    /%
    Sr/S0
    /%
    Er/E0
    /%
    Sr/S0
    /%
    Er/E0
    /%
    5-6010082.43.186.64.185.34.1
    20081.74.788.44.179.64.4
    30082.35.479.44.581.74.9
    50079.44.277.63.678.34.2
    Notes: Sr and S0—Residual strength and initial strength; Er and E0—Residual stiffness and initial stiffness.
    下载: 导出CSV
  • [1] NAAMAN A. Textile reinforced cement composites: Competitive status and research directions[C]//BRAMESHUBER W. Proceedings of the International RILEM Conference on Material Science. France: RILEM Publications, 2010: 3-22.
    [2] BRAMESHUBER W. Textile reinforced concrete-State-of-the-art report of RILEM TC 201-TRC[M]. Paris: RILEM Publications SARL, 2006: 11-27.
    [3] 刘赛, 朱德举, 李安令. 织物增强混凝土的研究与应用进展[J]. 建筑科学与工程学报, 2017, 34(5):134-146. doi: 10.3969/j.issn.1673-2049.2017.05.015

    LIU Sai, ZHU Deju, LI Anling. Research and application progress of textile reinforced concrete[J]. Journal of Architecture and Civil Engineering,2017,34(5):134-146(in Chinese). doi: 10.3969/j.issn.1673-2049.2017.05.015
    [4] YAN L B, KASAL B, HUANG L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering[J]. Composites Part B: Engineering,2016,92:94-132. doi: 10.1016/j.compositesb.2016.02.002
    [5] ZASTRAU B, LEPENIES I G, RICHTER M. On the multi scale modeling of textile reinforced concrete[J]. Technische Mechanik,2008,1:53-63.
    [6] ZHANG Y F, YANG W L, LIU H, et al. Effect of interfacial strength on the flexural behavior of glass fiber reinforced polymer (GFRP) reinforced concrete beam[J]. Journal of Wuhan University of Technology,2015,30(5):1001-1007. doi: 10.1007/s11595-015-1264-9
    [7] NANNI A. FRCM strengthening-A new tool in the concrete and masonry repair toolbox, concrete international[J]. Des Construct,2012,34:43-49.
    [8] GHIASSI B, MARCARI G, OLIVEIRA D V, et al. Numerical analysis of bond behavior between masonry bricks and composite materials[J]. Engineering Structures,2012,43:210-220. doi: 10.1016/j.engstruct.2012.05.022
    [9] BIELAK J, ADAM V, HEGGER J, et al. Shear capacity of textile-reinforced concrete slabs without shear reinforcement[J]. Applied Sciences,2019,9(7):1382. doi: 10.3390/app9071382
    [10] HÄUßLER-COMBE U, HARTIG J. Bond and failure mechanisms of textile reinforced concrete (TRC) under uniaxial tensile loading[J]. Cement and Concrete Composites,2007,29(4):279-289. doi: 10.1016/j.cemconcomp.2006.12.012
    [11] CAROZZI F G, MILANI G, POGGI C. Mechanical properties and numerical modeling of fabric reinforced cementitious matrix (FRCM) systems for strengthening of masonry structures[J]. Composite Structures,2014,107:711-725. doi: 10.1016/j.compstruct.2013.08.026
    [12] TELLO N, ALHOUBI Y, ABED F, et al. Circular and square columns strengthened with FRCM under concentric load[J]. Composite Structures,2021,255:113000. doi: 10.1016/j.compstruct.2020.113000
    [13] FURTADO A, RODRIGUES H, ARÊDE A, et al. The use of textile-reinforced mortar as a strengthening technique for the infill walls out-of-plane behaviour[J]. Composite Structures,2021,255:113029. doi: 10.1016/j.compstruct.2020.113029
    [14] SHAMS A, HEGGER J, HORSTMANN M. An analytical model for sandwich panels made of textile-reinforced concrete[J]. Construction and Building Materials,2014,64:451-459. doi: 10.1016/j.conbuildmat.2014.04.025
    [15] CURBACH M, GRAF W, JESSE D, et al. Segmental textile reinrorced concrete bridge design, manufacturing and numerical simulation[J]. Beton-Und Stahlbetonbau,2007,102(6):342-352. doi: 10.1002/best.200700550
    [16] REMPEL S, KULAS C, WILL N, et al. Extremely light and slender precast pedestrian-bridge made out of textile-reinforced concrete (TRC)[C]//HORDIJK, DIRK A, MLADENA L. High Tech Concrete: Where Technology and Engineering Meet. The Netherlands: Springer International Publishing, 2018: 2530-2537.
    [17] MESTICOU Z, BUI L, JUNES A, et al. Experimental investigation of tensile fatigue behaviour of textile-reinforced concrete (TRC): Effect of fatigue load and strain rate[J]. Composite Structures,2017,160:1136-1146. doi: 10.1016/j.compstruct.2016.11.009
    [18] DE MUNCK M, TYSMANS T, WASTIELS J, et al. Fatigue behaviour of textile reinforced cementitious composites and their application in sandwich elements[J]. Applied Sciences,2019,9(7):1293. doi: 10.3390/app9071293
    [19] CONTAMINE R, SI LARBI A, HAMELIN P. Contribution to direct tensile testing of textile reinforced concrete (TRC) composites[J]. Materials Science and Engineering: A,2011,528(29):8589-8598.
    [20] MASHIMA M, HANNANT D J, KEER J G. Tensile properties of polypropylene reinforced cement with different fiber orientations[J]. ACI Materials Journal,1990,87(2):172-178.
    [21] HEGGER J, WILL N, BRUCKERMANN O, et al. Load-bearing behaviour and simulation of textile reinforced concrete[J]. Materials and Structures, 2006, 39: 765-776.
    [22] 朱德举, 李新亮, 李安令. 经纬向纤维体积分数对耐碱玻璃纤维织物增强混凝土拉伸力学性能的影响[J]. 复合材料学报, 2022, 39(1):322-334.

    ZHU Deju, LI Xinliang, LI Anling. Influence of warp and weft fiber volume fractions on tensile mechanical properties of alkali-resistant glass textile reinforced concrete[J]. Acta Materiae Compositae Sinica,2022,39(1):322-334(in Chinese).
    [23] ZHU D J, LIU S, YAO Y M, et al. Effects of short fiber and pre-tension on the tensile behavior of basalt textile reinforced concrete[J]. Cement and Concrete Composites,2019,96:33-45. doi: 10.1016/j.cemconcomp.2018.11.015
    [24] WANG W J, ZHANG X J, CHOU W N, et al. Strain rate effect on the dynamic tensile behaviour of flax fibre reinforced polymer[J]. Composite Structures,2018,200:135-143. doi: 10.1016/j.compstruct.2018.05.109
    [25] 朱德举, 李高升. 短切纤维及预应力对玄武岩织物增强水泥基复合材料拉伸力学性能的影响[J]. 复合材料学报, 2017, 34(11):2631-2641. doi: 10.13801/j.cnki.fhclxb.20170301.003

    ZHU Deju, LI Gaosheng. Effect of short fibers and prestress on the tensile mechanical properties of basalt textile reinforced cementitious matrix composite[J]. Acta Materiae Compositae Sinica,2017,34(11):2631-2641(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170301.003
    [26] SILVA F DE A, BUTLER M, MECHTCHERINE V, et al. Strain rate effect on the tensile behaviour of textile-reinforced concrete under static and dynamic loading[J]. Materials Science and Engineering: A,2011,528(3):1727-1734. doi: 10.1016/j.msea.2010.11.014
    [27] JUN P, MECHTCHERINE V. Behaviour of strain-hardening cement-based composites (SHCC) under monotonic and cyclic tensile loading: Part 1–Experimental investigations[J]. Cement and Concrete Composites,2010,32(10):801-809. doi: 10.1016/j.cemconcomp.2010.07.019
    [28] 刘赛, 朱德举, 李安令, 等. 应变率和温度对耐碱玻璃纤维织物增强水泥基复合材料弯曲力学行为的影响[J]. 复合材料学报, 2017, 34(3):675-683. doi: 10.13801/j.cnki.fhclxb.20160531.001

    LIU Sai, ZHU Deju, LI Anling, et al. Effects of strain rate and temperature on the flexural mechanical properties of alkali-resistant glass fabric reinforced cementitious matrix composite[J]. Acta Materiae Compositae Sinica,2017,34(3):675-683(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160531.001
    [29] BARHUM R, MECHTCHERINE V. Effect of short, dispersed glass and carbon fibres on the behaviour of textile-reinforced concrete under tensile loading[J]. Engineering Fracture Mechanics,2012,92:56-71. doi: 10.1016/j.engfracmech.2012.06.001
    [30] BARHUM R, MECHTCHERINE V. Influence of short dispersed and short integral glass fibres on the mechanical behaviour of textile-reinforced concrete[J]. Materials and Structures,2013,46(4):557-572. doi: 10.1617/s11527-012-9913-3
    [31] CAROZZI F G, POGGI C. Mechanical properties and debonding strength of fabric reinforced cementitious matrix (FRCM) systems for masonry strengthening[J]. Compo-sites Part B: Engineering,2015,70:215-230. doi: 10.1016/j.compositesb.2014.10.056
    [32] LEPENIES I, MEYER C, SCHORN H, et al. Modeling of load transfer behavior of AR-glass-rovings in textile reinforced concrete: ACI SP 244-7[S]. Farmington Hills: American Concrete Institute, 2007.
    [33] 宗俊达, 姚卫星. FRP复合材料剩余刚度退化复合模型[J]. 复合材料学报, 2016, 33(2):280-286.

    ZONG Junda, YAO Weixing. Compound model of residual stiffness degradation for FRP composites[J]. Acta Materiae Compositae Sinica,2016,33(2):280-286(in Chinese).
    [34] WHITWORTH H A. Modeling stiffness reduction of graphite/epoxy composite laminates[J]. Journal of Composite Materials,1987,21(4):362-372. doi: 10.1177/002199838702100405
  • 加载中
图(19) / 表(10)
计量
  • 文章访问数:  474
  • HTML全文浏览量:  214
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-15
  • 修回日期:  2023-01-15
  • 录用日期:  2023-02-11
  • 网络出版日期:  2023-02-22
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回