留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维复合材料电导特性和力电耦合行为研究进展

韩朝锋 薛有松 张东生 冯向伟 陈莉娜 朱晓伟 吴海宏 苏玉恒

韩朝锋, 薛有松, 张东生, 等. 碳纤维复合材料电导特性和力电耦合行为研究进展[J]. 复合材料学报, 2023, 40(6): 3136-3152. doi: 10.13801/j.cnki.fhclxb.20230119.004
引用本文: 韩朝锋, 薛有松, 张东生, 等. 碳纤维复合材料电导特性和力电耦合行为研究进展[J]. 复合材料学报, 2023, 40(6): 3136-3152. doi: 10.13801/j.cnki.fhclxb.20230119.004
HAN Chaofeng, XUE Yousong, ZHANG Dongsheng, et al. Research progress on electrical property and electromechanical coupling behaviors of carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3136-3152. doi: 10.13801/j.cnki.fhclxb.20230119.004
Citation: HAN Chaofeng, XUE Yousong, ZHANG Dongsheng, et al. Research progress on electrical property and electromechanical coupling behaviors of carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3136-3152. doi: 10.13801/j.cnki.fhclxb.20230119.004

碳纤维复合材料电导特性和力电耦合行为研究进展

doi: 10.13801/j.cnki.fhclxb.20230119.004
基金项目: 国家自然科学基金委-河南省联合基金重点项目(U1604253);国家重点研发计划(2016YFB0101602)
详细信息
    通讯作者:

    吴海宏,博士,教授,博士生导师,研究方向为碳纤维复合材料结构-功能一体化 E-mail:hhwu@haut.edu.cn

  • 中图分类号: TB332

Research progress on electrical property and electromechanical coupling behaviors of carbon fiber composites

Funds: National Natural Science Foundation of China-Henan Province Joint Fund Key Project (U1604253); Supported by the National Key Research and Development Program of China (2016YFB0101602)
  • 摘要: 碳纤维复合材料具有良好的导电性能,但其作为增强体的树脂基复合材料的导电性能与增强体结构显著相关,且在加载条件下的结构变形触发碳纤维复合材料的导电行为发生改变,这一特性在智能传感器方面具有重要的应用。本文从复合材料电阻法结构健康监测应用出发,着重概述了不同维度增强体碳纤维树脂基复合材料的导电性能和预测模型、表面电势场分布和主要测量技术及力电耦合行为和本构模型,以期为碳纤维复合材料“材料-结构-功能”一体化集成系统的设计提供新方向和新途径。

     

  • 图  1  碳纤维复合材料在结构健康监测(SHM)中的应用:(a) 力电耦合行为;(b) 导电机制;(c) 飞机机翼监测;(d) 桥梁承载监测

    Figure  1.  Application of carbon fiber composites in structural health monitoring (SHM): (a) Electromechanical coupling behavior; (b) Conductive mechanism; (c) Aircraft wing monitoring; (d) Bridge bearing monitoring

    ΔR—Relative resistance change; R0—Initial resistance; σ1—Stress; ε1—Strain

    图  2  复合材料不同维度增强体结构

    Figure  2.  Different dimensional reinforcement structure of composites

    图  3  复合材料内部电流传导路径示意图

    Figure  3.  Schematic diagram of internal current conduction path of composites

    图  4  碳纤维复合材料内部三维导电网络示意图[23]

    Figure  4.  Schematic diagram of three-dimensional conductive network inside carbon fiber composite[23]

    图  5  缎纹机织复合材料层压板电导率多尺度均质模型分析[40]

    Figure  5.  Multi-scale homogeneous model analysis of electrical conductivity of satin woven composite laminates[40]

    [σ]yarn—Yarn conductivity; Rx, Ry, Rz—Resistance in the x, y and z directions of Unit 2; Reqx, Reqy, Reqz—Equivalent resistance of single-layer composite materials in the x, y and z directions

    图  6  不同铺层结构碳纤维复合材料层压板电势场和温度场分布[47]

    Figure  6.  Distribution of electric potential field and temperature field of carbon fiber composite laminates with different laminate structures[47]

    J—Electrical current; φ*—Electrical potential field; E*—Electrical field component; Q*—Heat flux; T*—Temperature; T*image—Thermal imaging temperature

    图  7  单对电极加载下平纹机织复合材料层压板表面电势场分布[42]

    Figure  7.  Surface potential field distributions of plain woven composite laminates under single pair of electrodes[42]

    CFRP—Carbon fiber reinforced plastic; DC—Direct current

    图  8  两对电极加载下平纹机织复合材料层压板表面电势场分布[42]

    Figure  8.  Surface potential field distributions of plain woven composite laminate under two pairs of electrodes[42]

    图  9  3D机织角连锁(AI)织物结构

    Figure  9.  Architecture of 3D woven angle-interlock (AI) fabric

    图  10  单对电极加载下3D机织AI复合材料表面电势场分布[56]

    Figure  10.  Surface potential field distributions of 3D woven AI composites under single pair of electrodes[56]

    AIW—Angle-interlock woven

    图  11  两对电极加载下3D机织AI复合材料表面电势场分布[56]

    Figure  11.  Surface potential field distribution of 3D woven AI composites under two pairs of electrodes[56]

    图  12  应变电压变化与循环次数曲线[64]

    Figure  12.  Strain and Potential vs. number of loading cycles curve[64]

    CH 1—Channel 1; CH 2—Channel 2

    图  13  单节点处电阻网路和等效电阻模型[68]

    Figure  13.  Electrical network and equivalent electrical circuit around a single node[68]

    δ—Electrical ineffective length; Ri,j—Node resistance; Rc—Contact resistance; Vi,j—Node voltage

    图  14  等效电阻模型[70]

    Figure  14.  Equivalent electrical circuit[70]

    RL(i)—Longitudinal resistance of the ith lamina; RΓ(i)—Thickness resistance associated with half of the ith lamina; A—Voltage contact

    图  15  (a) 循环压缩实验;(b) 灵敏度系数与压缩应变曲线[72]

    Figure  15.  (a) Cycle compressive test; (b) Gage factor vs compressive strain curve[72]

    图  16  循环载荷与最大剪切载荷比和相对电阻变化关系[11]

    Figure  16.  Relationship between the ratio of cycle load to shear strength and relative resistance change[11]

    图  17  电阻-循环次数曲线[14]

    Figure  17.  Resistance-number of loading cycles curve[14]

    表  1  单向复合材料层压板电导率预测模型

    Table  1.   Prediction model for electrical conductivity of unidirectional composite laminates

    ModelElectrical conductivity prediction model Ref.
    Longitudinal directionTransverse directionThickness direction
    Haider model (Composites containing conductive particles)${\sigma _{{{xx}}}} = {\sigma _{\text{f}}}{V_{\rm{f}}} + {\sigma _{\rm{m}}}(1 - {V_{\rm{f}}})$${\sigma _{{{yy}}}} = {\sigma _{zz}}{\text{ = }}{\sigma _{\text{m}}}\dfrac{{{\sigma _{\rm{f}}}(1 + {V_{\rm{f}}}) + {\sigma _{\text{m}}}(1 - {V_{\rm{f}}})}}{{{\sigma _{\rm{f}}}(1 - {V_{\rm{f}}}) + {\sigma _{\text{m}}}(1 + {V_{\rm{f}}})}}$ [34]
    Penetration model(Unidirectional composite)${\sigma _{{{zz}}}}{\text{ = }}{\sigma _{\rm{f}}}{\left( {{V_{\rm{f}}} - {V_{\rm{c}}}} \right)^{{p}}}$ [35]
    Bueche model(Composites containing conductive particles)${\sigma _{{{xx}}}} = \dfrac{{{{(1 - {V_{\rm{f}}})} /{{\sigma _{\rm{f}}} + {{{V_{\rm{f}}}{w_{\rm{g}}}} / {{\sigma _{\rm{m}}}}}}}}}{{{1 /{{\sigma _{\rm{m}}}{\sigma _{\rm{f}}}}}}}$ [36]
    Fiber contact model(Multidirectional composites containing angle layers)${\sigma _{ { {xx} } } } = \dfrac{ { {\text{π} } {d^2}X} }{ {4{ \sigma_{\text{f} } }{V_{\rm{p} } }{d_{\rm{c} } }l{\cos^2}\theta } }$${\sigma _{{\text{yy}}}} = \dfrac{{{\text{π}} {d^2}X}}{{4{\sigma _{{\rm{f}}}}{V_{\rm{p}}}{d_{\rm{c}}}l{\text{si}}{{\text{n}}^2}\theta }}$ [37]
    Fiber inclination model(Multidirectional composites containing angle layers)${\sigma _{ { {xx} } } } = {\sigma _{\rm{f} } }{V_{\text{f} } }\cos{^2}\theta \left(1 - \dfrac{ {L\tan \theta } }{W}\right)$${\sigma _{ { {yy} } } } = {\sigma _{\rm{f} } }{V_{\text{f} } }{\text{si} }{ {\text{n} }^2}\theta \left(1 - \dfrac{ {L\cot \theta } }{W}\right)$ [37]
    Effective medium model(Unidirectional composite)${\sigma _{{{xx}}}} = {\sigma _{\rm{m}}}\left[ {1 + \dfrac{{{V_{\rm{f}}}({\sigma _{\rm{f}}} - {\sigma _{\rm{m}}})\left[ {({\sigma _{\rm{f}}} - {\sigma _{\rm{m}}})\left( {{S_{11}} + {S_{33}}} \right) + 2{\sigma _{\rm{m}}}} \right]}}{{2{{({\sigma _{\rm{f}}} - {\sigma _{\rm{m}}})}^2}(1 - {V_{\rm{f}}}){S_{11}}{S_{33}} + {\sigma _{\rm{m}}}({\sigma _{\rm{f}}} - {\sigma _{\rm{m}}})(2 - {V_{\rm{f}}})({S_{11}} - {S_{33}})}}} \right]$ [38]
    McCullough model(Composites containing conductive particles)${\sigma _{ { {ii} } } } = {V_{\rm{f} } }{\sigma _{\rm{f} } } + {V_{\rm{m} } }{\sigma _{\rm{m} } } - \dfrac{ { {\lambda _i}{V_{\rm{f} } }{V_{\rm{m} } }{ {({\sigma _{\rm{f} } } - {\sigma _{\rm{m} } })}^2} } }{ { {V_{ { {{\rm{f}}i} } } }{\sigma _{\rm{f} } } + {V_{ { {{\rm{m}}i} } } }{\sigma _{\rm{m} } } } }$
    ${V_{{{\rm{f}}}}}_{{i}} = (1 - {\lambda _i}){V_{\text{f}}} + {\lambda _i}{V_{\text{m}}}$,${V_{\text{m}}}_{{i}} = (1 - {\lambda _i}){V_{\text{m}}} + {\lambda _i}{V_{\text{f}}}$, i=1, 2, 3
    [39]
    Notes: ${\sigma _{\text{f}}}$—Fiber conductivity; ${\sigma _{\text{m}}}$—Resin conductivity; ${V_{\text{f}}}$—Fiber volume fraction; ${V_{\text{c} } }$—Critical fiber volume fraction; p—Critical exponent; ${w_{\text{g} } }$—Conductive particle content; d—Fiber diameter; ${d_{\text{c}}}$—Fiber contact circle diameter; X—Fiber contact coefficient; l—Fiber length; ${V_{\text{p}}}$—Contact fiber volume; L—Sample length; W—Sample width; $\theta $—Fiber inclination angle; S—Shape parameter; x, y, z—Coordinate direction; 1, 2, 3—Principal axis direction; ${\lambda _{{{{i}}} } }$—Fiber contact factor; σxx, σyy, σzz—Electrical conductivity in the x, y and z directions; σii—Conductivity component.
    下载: 导出CSV

    表  2  单/多向复合材料层压板力电耦合本构模型

    Table  2.   Electromechanical coupling constitutive model of unidirectional/multi-directional composite laminates

    DimensionResistance modelElectromechanical coupling
    constitutive model
    Ref.
    1DConsidering fiber contact resistance, the basic resistance unit is the electrical ineffective length, which is suitable for unidirectional laminates$\dfrac{ {\Delta R} }{R} = \dfrac{ {(1 + \alpha \varepsilon )} }{ {\exp\left[ { - \left(\dfrac{ { {\delta _{\rm ec} } } }{ { {L_{\rm{O}}} } }\right)\left(\dfrac{ { {E_{\rm{f} } }\varepsilon } }{ { {\sigma _0} } }\right)} \right]} }{ { - } }1$[67]
    2DConsidering fiber contact resistance, the basic resistance unit
    is 1/2 of the ineffective length, suitable for unidirectional laminates
    $\begin{gathered} \dfrac{{\Delta {R_{11}}}}{{{R_{11}}}} = \dfrac{{1 + K{}_{11}{\varepsilon _{11}}}}{{{{\left( {1 - {F_1}} \right)}^2}}} - 1(0^\circ ) \\ \dfrac{{\Delta {R_{22}}}}{{{R_{22}}}} = \dfrac{{1 + K{}_{22}{\varepsilon _{22}}}}{{1 - {F_2}}} - 1(90^\circ ) \\ \end{gathered} $[69]
    1DConsidering the fiber contact resistance, it follows Weibull statistical distribution; Conductivity, which follows a linear change before fiber fracture and an exponential change after fiber fracture, suitable for multi-directional laminates$\begin{gathered} \dfrac{ {\Delta R} }{R} = \dfrac{ { {\text{1 + e} } } }{ { {\sigma / { {\sigma _{\rm 0} } } } } } - 1(\varepsilon \leqslant 10\% ) \\ \dfrac{ {\Delta R} }{R} = \dfrac{ { {\text{1 + e} } } }{ {b{ {\rm e}^{ - { {(S - {S_0})}^t} } } }} - 1(\varepsilon \leqslant 10\% ) \\ \end{gathered}$[71]
    2DConsidering Poisson effect, strain effect, and damage effect, suitable for multi-directional laminates$\begin{gathered}\upsilon = - \dfrac{{{\varepsilon _{11}}}}{{{\varepsilon _{33}}}},{\left( {\dfrac{{\Delta \rho }}{\rho }} \right)_{{\text{reversible}}}} = \alpha {\varepsilon _{33}} \\ \dfrac{{\Delta {R_{33}}}}{{{R_{33}}}} = {\varepsilon _{33}}(1 + \alpha + 2\upsilon ) \\ \dfrac{{\Delta {R_{11}}}}{{{R_{11}}}} = \dfrac{{\Delta {\rho _{11}}}}{{{\rho _{11}}}} - \dfrac{{{{\Delta {R_{33}}} \mathord{\left/ {\vphantom {{\Delta {R_{33}}} {{R_{33}}}}} \right. } {{R_{33}}}}}}{{1 + \alpha + 2\upsilon }} \\ {\left( {\dfrac{{\Delta \rho }}{\rho }} \right)_{{\text{irreversible}}}} = \beta {\varepsilon _{33}} \\ \end{gathered} $[72]
    Notes: $\Delta R$—Resistance change rate; R—Resistance; $\alpha $—Gage factor; $\varepsilon $—Strain; ${\delta _{{\text{ec}}}}$—Slip length; ${E_{\text{f}}}$—Tensile modulus; L—Sample length; ${L_{\text{O}}}$—Reference length; ${\sigma _{\text{0}}}$—Weibull scale factor; K—Strain coefficient; ${F_{\text{1}}}$—Failure probability of series resistor components; ${F_{\text{2}}}$—Probability of failure of parallel resistor components; S—Loading stress; ${S_{\text{0}}}$—Reference stress; $\Delta \rho $—Resistivity change rate; $\rho $—Resistivity; υ—Poisson's ratio; b—Constant, 0.973; t—Constant,8.67; β—Damage effect coefficient.
    下载: 导出CSV
  • [1] LLORCA J, GONZALEZ C, MOLINA-ALDAREGUIA J M, et al. Multiscale modeling of composite materials: A roadmap towards virtual testing[J]. ChemInform, 2011, 23: 5130-5147.
    [2] 王晓旭, 张典堂, 钱坤, 等. 深海纤维增强树脂复合材料圆柱耐压壳力学性能的研究进展[J]. 复合材料学报, 2020, 37(1): 16-26.

    WANG X X, ZHANG D T, QIAN K, et al. Research progress on mechanical properties of deep-seafiber reinforced resin composite cylindrical pressureshells[J]. Acta Materiae Compositae Sinica, 2020, 37(1): 16-26(in Chinese).
    [3] HUANG Z M, LI P. Prediction of laminate delamination with no iteration[J]. Engineering Fracture Mechanics, 2020, 238: 107248.
    [4] GE L, LI H, ZHONG J, et al. Micro-CT based trans-scale damage analysis of 3D braided composites with pore defects[J]. Composites Science and Technology, 2021, 211: 108830.
    [5] KE Y, HUANG S, GUO J, et al. Effects of thermo-oxidative aging on 3-D deformation field and mechanical behaviors of 3-D angle-interlock woven composites[J]. Composite Structures, 2022, 281: 115116.
    [6] IRFAN M S, KHAN T, HUSSAIN T, et al. Carbon coated piezoresistive fiber sensors: From process monitoring to structural health monitoring of composites—A review[J]. Composites Part A: Applied Science and Manufacturing, 2021, 141: 106236.
    [7] GONZÁLEZ C, VILATELA J J, MOLINA-ALDAREGUÍA J M, et al. Structural composites for multifunctional applications: Current challenges and future trends[J]. Progress in Materials Science, 2017, 89: 194-251.
    [8] CHUNG D D L. A review of multifunctional polymer-matrix structural composites[J]. Composites Part B: Engineering, 2019, 160: 644-660.
    [9] ROH H D, OH S Y, PARK Y B. Self-sensing impact damage in and non-destructive evaluation of carbon fiber-reinforced polymers using electrical resistance and the corresponding electrical route models[J]. Sensors and Actuators A: Physical, 2021, 332: 112762.
    [10] MATSUZAKI R, YAMAMOTO K, TODOROKI A. Delamination detection in carbon fiber reinforced plastic cross-ply laminates using crack swarm inspection: Experimental verification[J]. Composite Structures, 2017, 173: 127-135.
    [11] HAN C, HUANG S, SUN B, et al. Electrical resistance changes of 3D carbon fiber/epoxy woven composites under short beam shear loading along different orientations[J]. Composite Structures, 2021, 276: 114549.
    [12] CAN-ORTIZ A, ABOT J L, AVILÉS F. Electrical characterization of carbon-based fibers and their application for sensing relaxation-induced piezoresistivity in polymer composites[J]. Carbon, 2019, 145: 119-130.
    [13] SALEH M N, YUDHANTO A, LUBINEAU G, et al. The effect of z-binding yarns on the electrical properties of 3D woven composites[J]. Composite Structures, 2017, 182: 606-616.
    [14] 薛有松, 薛凌明, 孙宝忠, 等. 碳纤维三维角联锁机织复合材料弯曲作用下力阻响应[J]. 复合材料学报, 2023, 40(3): 1468-1476.

    XUE Y S, XUE L M, SUN B Z, et al. Piezoresistive effect of carbon fiber 3D angle-interlock woven composites under bending[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1468-1476(in Chinese).
    [15] SELVAKUMARAN L, LONG Q, PRUDHOMME S, et al. On the detectability of transverse cracks in laminated composites using electrical potential change measurements[J]. Composite Structures, 2015, 121: 237-246.
    [16] BOUSSU F, CRISTIAN I, NAUMAN S. General definition of 3D warp interlock fabric architecture[J]. Composites Part B: Engineering, 2015, 81: 171-188.
    [17] YU H, SUN J, HEIDER D, et al. Experimental investigation of through-thickness resistivity of unidirectional carbon fiber tows[J]. Journal of Composite Materials, 2019, 53: 2993-3003.
    [18] JIANG M, CONG X, YI X, et al. A stochastic overlap network model of electrical properties for conductive weft yarn composites and their experimental study[J]. Composites Science and Technology, 2022, 217: 109075.
    [19] WINTIBA B, VASIUKOV D, PANIER S, et al. Automated reconstruction and conformal discretization of 3D woven composite CT scans with local fiber volume fraction control[J]. Composite Structures, 2020, 248: 112438.
    [20] ISAAC-MEDINA B, ALONZO-GARCÍA A, AVILÉS F. Electrical self-sensing of impact damage in multiscale hierarchical composites with tailored location of carbon nanotube networks[J]. Structural Health Monitoring, 2019, 18: 806-818.
    [21] YU H, HEIDER D, ADVANI S. A 3D microstructure based resistor network model for the electrical resistivity of unidirectional carbon composites[J]. Composite Structures, 2015, 134: 740-749.
    [22] LOUIS M, JOSHI S P, BROCKMANN W. An experimental investigation of through-thickness electrical resistivity of CFRP laminates[J]. Composites Science and Technology, 2001, 61: 911-919.
    [23] HAN C, SUN B, GU B. Electric conductivity and surface potential distributions in carbon fiber reinforced composites with different ply orientations[J]. Textile Research Journal, 2022, 92: 1147-1160.
    [24] ABRY J C, BOCHARD S, CHATEAUMINOIS A, et al. In situ detection of damage in CFRP laminates by electrical resistance measurements[J]. Composites Science and Technology, 1999, 59: 925-935.
    [25] TODOROKI A, TANAKA M, SHIMAMURA Y. Measurement of orthotropic electric conductance of CFRP laminates and analysis of the effect on delamination monitoring with an electric resistance change method[J]. Composites Science and Technology, 2002, 62: 619-628.
    [26] WASSELYNCK G, TRICHET D, FOULADGAR J. Determination of the electrical conductivity tensor of a CFRP composite using a 3-D percolation model[J]. IEEE Transactions on Magnetics, 2013, 49: 1825-1828.
    [27] KANE B, PIERQUIN A, WASSELYNCK G, et al. Coupled numerical and experimental identification of geometrical parameters for predicting the electrical conductivity of CFRP layers[J]. IEEE Transactions on Magnetics, 2020, 56: 6701604.
    [28] XIAO J, LI Y, FAN W X. A laminate theory of piezoresistance for composite laminates[J]. Composites Science and Technology, 1999, 59: 1369-1373.
    [29] TODOROKI A. Electric current analysis for thick laminated CFRP composites[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2012, 55: 237-243.
    [30] YAMANE T, TODOROKI A. Analysis of electric current density in carbon fiber reinforced plastic laminated plates with angled plies[J]. Composite Structures, 2017, 166: 268-276.
    [31] ATHANASOPOULOS N, KOSTOPOULOS V. A comprehensive study on the equivalent electrical conductivity tensor validity for thin multidirectional carbon fibre reinforced plastics[J]. Composites Part B: Engineering, 2014, 67: 244-255.
    [32] BENSAID S, TRICHET D, FOULADGAR J. Electrical conductivity identification of composite materials using a 3-D anisotropic shell element model[J]. IEEE Transactions on Magnetics, 2009, 45: 1859-1862.
    [33] CHENG J, JI H, TAKAGI T, et al. Role of interlaminar interface on bulk conductivity and electrical anisotropy of CFRP Laminates measured by eddy current method[J]. NDT & E International, 2014, 68: 1-12.
    [34] HAIDER M F, HAIDER M M, YASMEEN F. Micromechanics model for predicting anisotropic electrical conductivity of carbon fiber composite materials[J]. AIP Conference Proceedings, 2016, 1754: 030011.
    [35] VILČÁKOVÁ J, SÁHA P, QUADRAT O. Electrical conductivity of carbon fibres/polyester resin composites in the percolation threshold region[J]. European Polymer Journal, 2002, 38: 2343-2347.
    [36] AHARONI S M. Electrical resistivity of a composite of conducting particles in an insulating matrix[J]. Journal of Applied Physics, 1972, 43: 2463-2465.
    [37] WEBER M, KAMAL M R. Estimation of the volume resistivity of electrically conductive composites[J]. Polymer Composites, 1997, 18: 711-725.
    [38] TAYA M, UEDA N. Prediction of the in-plane electrical conductivity of a misoriented short fiber composite: Fiber percolation model versus effective medium theory[J]. Journal of Engineering Materials and Technology-Transactions of the Asme, 1987, 109: 252-256.
    [39] BERGER M A, MCCULLOUGH R L. Characterization and analysis of the electrical properties of a metal-filled polymer[J]. Composites Science and Technology, 1985, 22: 81-106.
    [40] SENGHOR F, WASSELYNCK G, HUU KIEN B, et al. Electrical conductivity tensor modeling of stratified woven-fabric carbon fiber reinforced polymer composite materials[J]. IEEE Transactions on Magnetics, 2017, 53: 9401604.
    [41] BALTOPOULOS A, POLYDORIDES N, PAMBAGUIAN L, et al. Damage identification in carbon fiber reinforced polymer plates using electrical resistance tomography mapping[J]. Journal of Composite Materials, 2013, 47: 3285-3301.
    [42] HAN C, SUN B, GU B. Electric potential distributions in carbon fiber/epoxy plain-woven laminates with different current directions[J]. Composite Structures, 2021, 270: 114059.
    [43] 石荣荣, 武宝林. 三维编织碳纤维复合材料电阻率的估算[J]. 复合材料学报, 2016, 33(12): 2775-2780.

    SHI R R, WU B L. Resistivity estimation of 3D braided carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2016, 33(12): 2775-2780(in Chinese).
    [44] WANG D, CHUNG D D L. Comparative evaluation of the electrical configurations for the two-dimensional electric potential method of damage monitoring in carbon fiber polymer-matrix composite[J]. Smart Materials and Structures, 2006, 15: 1332-1344.
    [45] ANGELIDIS N, KHEMIRI N, IRVING P E. Experimental and finite element study of the electrical potential technique for damage detection in CFRP laminates[J]. Smart Materials and Structures, 2004, 14: 147-154.
    [46] ANGELIDIS N, IRVING P E. Detection of impact damage in CFRP laminates by means of electrical potential techniques[J]. Composites Science and Technology, 2007, 67: 594-604.
    [47] ATHANASOPOULOS N, KOSTOPOULOS V. Resistive heating of multidirectional and unidirectional dry carbon fibre preforms[J]. Composites Science and Technology, 2012, 72: 1273-1282.
    [48] BUSCH R, RIES G, WERTHNER H, et al. New aspects of the mixed state from six-terminal measurements on Bi2Sr2CaCu2Ox single crystals[J]. Physical Review Letters, 1992, 69: 522-525.
    [49] PARK J B, OKABE T, TAKEDA N. New concept for modeling the electromechanical behavior of unidirectional carbon-fiber-reinforced plastic under tensile loading[J]. Smart Materials and Structures, 2003, 12: 105-114.
    [50] TODOROKI A. Electric current analysis of CFRP using perfect fluid potential flow[J]. Journal of The Japan Society for Aeronautical and Space Sciences, 2012, 55: 183-190.
    [51] YAMANE T, TODOROKI A. Electric potential function of oblique current in laminated carbon fiber reinforced polymer composite beam[J]. Composite Structures, 2016, 148: 74-84.
    [52] YAMANE T, TODOROKI A, FUJITA H, et al. Electric current distribution of carbon fiber reinforced polymer beam: Analysis and experimental measurements[J]. Advanced Composite Materials, 2016, 25: 497-513.
    [53] LEE I Y, ROH H D, PARK Y B. Novel structural health monitoring method for CFRPs using electrical resistance based probabilistic sensing cloud[J]. Composites Science and Technology, 2021 ,213: 108812.
    [54] KIKUNAGA K, TERASAKI N. Characterization of electrical conductivity of carbon fiber reinforced plastic using surface potential distribution[J]. Japanese Journal of Applied Physics, 2018, 57: 04 FC02.
    [55] GAIER J R, YODERVANDENBERG Y, BERKEBILE S, et al. The electrical and thermal conductivity of woven pristine and intercalated graphite fiber-polymer composites[J]. Carbon, 2003, 41: 2187-2193.
    [56] 韩朝锋. 碳纤维复合材料电导率、电势分布及力电耦合行为[D]. 上海: 东华大学, 2022.

    HAN C F. Electrical conductivity, potential distributions and electromechanical coupling behavior of carbon fiber composites[D]. Shanghai: Donghua University, 2022(in Chinese).
    [57] CHUNG D D L. A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing[J]. Journal of Materials Science, 2020, 55: 15367-15396.
    [58] WANG S, CHUNG D, CHUNG J. Self-sensing of damage in carbon fiber polymer-matrix composite by measurement of the electrical resistance or potential away from the damaged region[J]. Journal of Materials Science, 2005, 40: 6463-6472.
    [59] WANG S, CHUNG D D L, CHUNG J H. Impact damage of carbon fiber polymer–matrix composites, studied by electrical resistance measurement[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36: 1707-1715.
    [60] WANG S, CHUNG D D L, CHUNG J H. Self-sensing of damage in carbon fiber polymer-matrix composite cylinder by electrical resistance measurement[J]. Journal of Intelligent Material Systems and Structures, 2006, 17: 57-62.
    [61] LEONG C K, WANG S, CHUNG D D L. Effect of through-thickness compression on the microstructure of carbon fiber polymer-matrix composites, as studied by electrical resistance measurement[J]. Journal of Materials Science, 2006, 41: 2877-2884.
    [62] WANG D, WANG S, CHUNG D D L, et al. Comparison of the electrical resistance and potential techniques for the self-sensing of damage in carbon fiber polymer-matrix composites[J]. Journal of Intelligent Material Systems and Structures, 2006, 17: 853-861.
    [63] WANG D, CHUNG D D L. Through-thickness stress sensing of a carbon fiber polymer-matrix composite by electrical resistance measurement[J]. Smart Materials and Structures, 2007, 16: 1320-1330.
    [64] ANGELIDIS N, WEI C Y, IRVING P E. The electrical resistance response of continuous carbon fibre composite laminates to mechanical strain[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35: 1135-1147.
    [65] WEN S, CHUNG D D L. Electrical-resistance-based damage self-sensing in carbon fiber reinforced cement[J]. Carbon, 2007, 45: 710-716.
    [66] KWON D J, SHIN P S, KIM J H, et al. Detection of damage in cylindrical parts of carbon fiber/epoxy composites using electrical resistance (ER) measurements[J]. Composites Part B: Engineering, 2016, 99: 528-532.
    [67] PARK JB, OKABE T, TAKEDA N, et al. Electromechanical modeling of unidirectional CFRP composites under tensile loading condition[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33: 267-275.
    [68] XIA Z, OKABE T, PARK J B, et al. Quantitative damage detection in CFRP composites: Coupled mechanical and electrical models[J]. Composites Science and Technology, 2003, 63: 1411-1422.
    [69] OGI K, TAKAO Y. Characterization of piezoresistance behavior in a CFRP unidirectional laminate[J]. Composites Science and Technology, 2005, 65: 231-239.
    [70] ZHU S, CHUNG D D L. Analytical model of piezoresistivity for strain sensing in carbon fiber polymer-matrix structural composite under flexure[J]. Carbon, 2007, 45: 1606-1613.
    [71] SEVKAT E, LI J, LIAW B, et al. A statistical model of electrical resistance of carbon fiber reinforced composites under tensile loading[J]. Composites Science and Technology, 2008, 68: 2214-2219.
    [72] WANG D, CHUNG D D L. Through-thickness piezoresistivity in a carbon fiber polymer-matrix structural composite for electrical-resistance-based through-thickness strain sensing[J]. Carbon, 2013, 60: 129-138.
    [73] NISHIO Y, TODOROKI A, MIZUTANI Y, et al. Piezoresistive effect of plain-weave CFRP fabric subjected to cyclic loading[J]. Advanced Composite Materials, 2017, 26: 229-243.
    [74] ROH H D, LEE S Y, JO E, et al. Deformation and interlaminar crack propagation sensing in carbon fiber composites using electrical resistance measurement[J]. Composite Structures, 2019, 216: 142-150.
    [75] ALSAADI A, MEREDITH J, SWAIT T, et al. Structural health monitoring for woven fabric CFRP laminates[J]. Composites Part B: Engineering, 2019, 174: 107048.
    [76] WAN Z K, WANG Z G. Electrical characteristics of composite material under loading based on SQUID technology[J]. Journal of Textile Research, 2010, 31: 58-63.
    [77] CHENG X, ZHOU H, WU Z, et al. An investigation into self-sensing property of hat-shaped 3D orthogonal woven composite under bending test[J]. Journal of Reinforced Plastics and Composites, 2019, 38: 149-166.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  1223
  • HTML全文浏览量:  601
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-25
  • 修回日期:  2023-01-06
  • 录用日期:  2023-01-19
  • 网络出版日期:  2023-01-19
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回