留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物基柔性透明电磁屏蔽复合材料研究进展

黄星 任家飞 李齐方 周政

黄星, 任家飞, 李齐方, 等. 聚合物基柔性透明电磁屏蔽复合材料研究进展[J]. 复合材料学报, 2023, 40(6): 3153-3166. doi: 10.13801/j.cnki.fhclxb.20230119.003
引用本文: 黄星, 任家飞, 李齐方, 等. 聚合物基柔性透明电磁屏蔽复合材料研究进展[J]. 复合材料学报, 2023, 40(6): 3153-3166. doi: 10.13801/j.cnki.fhclxb.20230119.003
HUANG Xing, REN Jiafei, LI Qifang, et al. Research progress of polymer-based flexible transparent electromagnetic shielding composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3153-3166. doi: 10.13801/j.cnki.fhclxb.20230119.003
Citation: HUANG Xing, REN Jiafei, LI Qifang, et al. Research progress of polymer-based flexible transparent electromagnetic shielding composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3153-3166. doi: 10.13801/j.cnki.fhclxb.20230119.003

聚合物基柔性透明电磁屏蔽复合材料研究进展

doi: 10.13801/j.cnki.fhclxb.20230119.003
基金项目: 先进功能复合材料技术重点实验室开放基金(6142906210101)
详细信息
    通讯作者:

    周政,博士,教授,硕士生导师,研究方向为功能高分子材料 E-mail: zhouzheng@mail.buct.edu.cn

  • 中图分类号: TB332

Research progress of polymer-based flexible transparent electromagnetic shielding composite materials

Funds: Science and Technology on Advanced Functional Composites Laboratory Open Fund Project (6142906210101)
  • 摘要: 随着电子信息技术的快速发展,国防军工、电子通讯及可穿戴电子等领域对电磁屏蔽材料的柔性和光学透明性提出了更高的要求,开发兼具高透明性和柔性的高性能电磁屏蔽材料已成为当今研究的热点。本文介绍了近年来聚合物基柔性透明电磁屏蔽复合材料的研究进展,对聚合物基底和屏蔽材料的种类、复合材料的制备方法进行了对比总结,阐述了不同材料的柔性、透明性与电磁屏蔽性能的相互制约问题及解决方法,并对未来聚合物基柔性透明电磁屏蔽复合材料的发展方向进行了展望。

     

  • 图  1  (a) 不同ZnO-Ag-ZnO(SLSO)结构示意图;复合膜的实物图 (b)、透光率 (c)、电磁屏蔽(EMI SE)曲线 (d)、弯曲测试图 (e) 和透明EMI机制 (f)

    Figure  1.  (a) Schematic of different ZnO-Ag-ZnO (SLSO) structures; Photograph (b), transmittance (c), Electromagnetic interference shielding (EMI SE) curves (d), Bending test (e) and transparent EMI mechanism (f) of the composite film

    D-SLSO—Double-sided SLSO; PET—Polyethylene terephthalate; ITO—Indium tin oxid

    图  2  纳米分支结构氧化铟锡(ITO)的EMI SE机制示意图 (a) 及透光率 (b);ITO-PI薄膜的实物图和SEM俯视图像 (c)、EMI SE曲线 (d)及弯曲测试 (e)

    Figure  2.  Schematic of the EMI SE mechanism (a) and transmittance of indium tin oxide (ITO) nanobranches (b); Digital image and top-view SEM image (c), EMI SE curves (d) and bending test (e) of ITO-PI film

    RT—Room temperature

    图  3  聚对苯二甲酸乙二醇酯(PET)-聚乙烯醇(PVA)@Ag纳米管(AgNT)-聚二甲基硅氧烷(PDMS)复合膜的制备过程 (a)、实物图 (b)、透光率 (c)、EMI SE曲线 (d)、弯曲和扭转测试 (e) 及EMI SE机制图 (f)

    Figure  3.  Fabrication process (a), image (b), transmittance (c), EMI SE curves (d), bending and twisting test (e) and EMI SE mechanism (f) of the polyethylene terephthalate (PET)-polyvinyl alcohol (PVA)@Ag nanotube (AgNT)-polydimethylsiloxane (PDMS) composite film

    图  4  AgNF-PET复合膜的制备过程 (a)、A4尺寸实物图和SEM图像 (b)、透光率 (c)、EMI SE曲线 (d) 及弯曲循环测试 (e)

    Figure  4.  Fabrication process (a), A4-scale image and SEM image (b), Transmittance (c), EMI SE curves (d) and bending cycles test (e) of AgNF-PET composite film

    图  5  AgNWs-PDMS薄膜的制备过程 (a) 及EMI SE原理图 (b)

    Figure  5.  Fabrication process (a) and EMI SE schematic (b) of AgNWs-PDMS film

    图  6  单晶石墨烯-PET-单晶石墨烯复合膜的制备过程 (a)、透光率和实物图 (b)、EMI SE曲线 (c) 及弯曲循环测试(d)

    Figure  6.  Fabrication process (a), transmittance and image (b), EMI SE curves (c) and bending cycles test (d) of the single-crystalline graphene-PET-single-crystalline graphene composite film

    SCG—Single crystal graphene; SET—Total EMI SE

    图  7  MXene薄膜EMI SE机制

    Figure  7.  EMI SE mechanism of MXene film

    图  8  PET-Ag纳米线(AgNWs)-聚3,4-乙烯二氧噻吩∶聚苯乙烯磺酸盐(PEDOT∶PSS)@Ni复合膜制备过程示意图

    Figure  8.  Fabrication process of PET-Ag nanowires (AgNWs)-poly 3, 4-vinyl dioxthiophene∶polystyrene sulfonate (PEDOT∶PSS)@Ni composite film

    表  1  常见金属材料的电导率

    Table  1.   Electrical conductivities of common metal materials

    Types of metal materialsElectrical conductivity/(S·m−1)
    Silver6.3×107
    Copper5.6×107
    Gold4.1×107
    Aluminum3.5×107
    Magnesium2.2×107
    Titanium2.1×107
    Zinc1.7×107
    Nickel1.3×107
    下载: 导出CSV

    表  2  不同聚合物基柔性透明EMI SE复合材料的EMI SE和透光率

    Table  2.   EMI SE and transmittance of different polymer-based flexible transparent EMI SE composites

    EMI shielding materialsPolymer matrixEMI SE/dBFrequency/GHzTransmittanceRef.
    ZnO-Ag-ZnO PET >40.0 4.0-40.0 88.9% [34]
    ITO PI 15.0 8.0-18.0 >80.0% [37]
    ITO-Cu-Ag-ITO PET 26.0 8.0-40.0 96.5% [38]
    Nickel-mesh PET 46.9 8.2 88.7% [43]
    Copper nanowires PET,PES 22.0 8.2-12.4 73.0% [27]
    AgNT PET,PDMS 21.0 8.2-12.4 90.0% [46]
    AgNF PET 20.0 8.2-12.4 89.0% [47]
    AgNWs PET 28.1 8.2-12.4 91.3% [15]
    AgNWs PMMA >30.0 1.0-18.0 >80.0% [48]
    AgNWs Polyurea >31.0 8.2-12.4 77.5% [13]
    AgNWs HPMC 45.8 8.2-12.4 90.5% [23]
    AgNWs PDDA 31.3 8.2-12.4 86.8% [26]
    AgNWs PET,PMMA 21.3 8.0-12.0 95.6% [30]
    AgNWs Gelatin 37.7 8.2-12.4 71.9% [22]
    AgNWs PDMS 27.0 8.2-12.4 91.0% [18]
    AgNWs Cellulose nanofibers 20.0 8.2-12.4 86.7% [19]
    Graphene PET 8.0 8.0-12.0 89.4% [53]
    RGO PEI 3.1 0.5-8.5 73.0% [28]
    RGO-AgNWs Polyacrylic >24.0 0.5-3.0 >85.0% [29]
    Graphene-AgNWs PET, Polyurethane 23.9 0-3.0 85.0% [54]
    AgNWs@RGO PDMS 35.5 8.2-12.4 91.1% [55]
    RGO-AgNWs PET 33.6 8.2-12.4 81.9% [56]
    SWCNT PET 28.0 10.0 90.0% [52]
    MXene PC 20.0 8.2-12.4 33.4% [63]
    MXene-AgNWs PET 49.2 8.2-12.4 82.8% [31]
    MXene-AgNWs PET, PVA 30.5 8.2-12.4 81.0% [25]
    MXene-AgNWs PET 24.6 8.2-12.4 81.0% [64]
    PPy PDMS 7.9 5.9-8.2 40.1% [65]
    AgNWs-PEDOT:PSS@Nickel PET 19.6 8.2-12.4 78.2% [16]
    Notes: PES—Polyether sulfone; PMMA—Polymethyl methacrylate; NF—Nanofiber; HPMC—Hydroxy propyl methyl cellulose; PPy—Polypyrrole; RGO—Reduced graphene oxide.
    下载: 导出CSV

    表  3  不同电磁屏蔽复合材料的制备方法及柔性测试

    Table  3.   Preparation methods and flexibility tests of different electromagnetic shielding composite materials

    Ref.MethodsBending radius/angleNumber of cyclesRetention of EMI SE
    [34]Magnetron sputtering6 mm1000-
    [37]Electron-beam evaporation180°20000092%
    [38]Sedimentation, Co-sputtering6 mm250-
    [43]Imprinting transfer---
    [27]Vacuum filtration, spin coating1.5 mm1000-
    [46]Electrospinning, magnetron sputtering1.5 cm500092%
    [47]Blow spinning1 mm1000-
    [15]Mayer rod coating-1000-
    [48]Spray coating-1000-
    [13]Vacuum filtration---
    [23]Drop coating6 mm1000-
    [26]Mayer rod coating---
    [30]Mayer rod coating, spin coating-10000-
    [22]Rod coating-1000-
    [18]Photolithographic1.8 mm1200-
    [19]Spin coating---
    [53]Chemical vapor deposition1.56 cm*500>95%
    [28]Electrophoretic deposition---
    [29]Automatic film applicator---
    [54]Spin coating2 mm*300000-
    [55]Electrodeposition---
    [56]Spray coating2 mm100096%
    [52]Decalcomania transfer---
    [63]Spraying, spin coating2 mm100088%
    [31]Spray coating1.3 mm3000-
    [25]Spray coating2 mm100094%
    [64]Spray coating1.97 mm2000
    [65]Mixing---
    [16]Spray coating, electroplating---
    Note:*—Radius of curvature.
    下载: 导出CSV
  • [1] JAGETIA G C. Genotoxic effects of electromagnetic field radiations from mobile phones[J]. Environmental Research,2022,212:113321. doi: 10.1016/j.envres.2022.113321
    [2] SEAMAN R L. Biological effects of electromagnetic radiation[J]. Proceedings of the IEEE,1985,73(10):1532.
    [3] 刘锋, 李跃波, 潘征, 等. 高功率微波对防护工程的影响及防护对策思考[J]. 防护工程, 2011, 33(1):66-70.

    LIU Feng, LI Yuebo, PAN Zheng, et al. Influence of high power microwave on protective engineering and protective countermeasures[J]. Protective Engineering,2011,33(1):66-70(in Chinese).
    [4] 潘征, 石立华, 杨杰, 等. 关于防护工程电磁脉冲系统性防护的探讨[J]. 防护工程, 2017, 39(3):73-78.

    PAN Zheng, SHI Lihua, YANG Jie, et al. Discussion on systemic electromagnetic pulse protection of protective engineering[J]. Protective Engineering,2017,39(3):73-78(in Chinese).
    [5] 杨杰, 李跃波, 刘锋, 等. 电磁防护与电磁伪装及隔震技术在防护工程中的综合运用[J]. 防护工程, 2012, 34(1):60-63.

    YANG Jie, LI Yuebo, LIU Feng, et al. Comprehensive application of electromagnetic pulse protection, electromagnetic disguise and shock isolation systems in engineering protection[J]. Protective Engineering,2012,34(1):60-63(in Chinese).
    [6] SANKARAN S, DESHMUKH K, AHAMED M B, et al. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review[J]. Composites Part A: Applied Science and Manufacturing,2018,114:49-71. doi: 10.1016/j.compositesa.2018.08.006
    [7] LU Z G, MA L M, TAN J B, et al. Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance[J]. Nanoscale,2016,8(37):16684-16693. doi: 10.1039/C6NR02619B
    [8] SHEN B, LI Y, YI D, et al. Microcellular graphene foam for improved broadband electromagnetic interference shielding[J]. Carbon,2016,102:154-160. doi: 10.1016/j.carbon.2016.02.040
    [9] ZENG Z H, JIN H, CHEN M J, et al. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding[J]. Advanced Functional Materials,2015,26(2):303-310.
    [10] JIANG D, MURUGADOSS V, WANG Y, et al. Electromagnetic interference shielding polymers and nanocomposites-A review[J]. Polymer Reviews,2018,59(2):280-337.
    [11] 王赫岩. 基于超薄掺杂银膜的透明电磁屏蔽方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    WANG Heyan. Transparent electromagnetic shielding method based on ultrathin doped silver film[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [12] JIA L C, YAN D X, LIU X F, et al. Highly efficient and reliable transparent electromagnetic interference shielding film[J]. ACS Applied Materials & Interfaces,2018,10(14):11941-11949. doi: 10.1021/acsami.8b00492
    [13] SUN F Y, XU J H, LIU T, et al. An autonomously ultrafast self-healing, highly colourless, tear-resistant and compliant elastomer tailored for transparent electromagnetic interference shielding films integrated in flexible and optical electronics[J]. Materials Horizons,2021,8(12):3356-3367. doi: 10.1039/D1MH01199E
    [14] HU M J, GAO J F, DONG Y C, et al. Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding[J]. Langmuir,2012,28(18):7101-7106. doi: 10.1021/la300720y
    [15] YANG H, BAI S C, GUO X Z, et al. Robust and smooth UV-curable layer overcoated AgNW flexible transparent conductor for EMI shielding and film heater[J]. Applied Surface Science,2019,483:888-94. doi: 10.1016/j.apsusc.2019.04.034
    [16] ZHANG X Y, SHAN J Q, LIU C L, et al. High corrosion-resistant silver nanowire/poly(3, 4-ethylene dioxythiophene)/poly(styrene sulfonate)@nickel electrode for transparent electromagnetic shielding film[J]. Journal of Materiomics,2022,8(6):1191-1198. doi: 10.1016/j.jmat.2022.05.008
    [17] KIM D H, KIM Y, KIM J W. Transparent and flexible film for shielding electromagnetic interference[J]. Materials & Design,2016,89:703-707. doi: 10.1016/j.matdes.2015.09.142
    [18] ZHAO C, SUN Q Y, HU K, et al. Self-assembled woven Ag-nanowire 3 D network film for ultrathin, transparent, and flexible surface electromagnetic interference shielding[J]. Advanced Materials Technologies,2022,7(8):2101540. doi: 10.1002/admt.202101540
    [19] XU H Y, LIU D N, SONG Y H, et al. Ultra-sensitive and flexible electronic skin from nanocellulose/AgNWs hydrogel films with highly transparent, antibacterial and electromagnetic shielding properties[J]. Composites Science and Technology,2022,228:109679. doi: 10.1016/j.compscitech.2022.109679
    [20] WANG Y X, LIU P, WANG H H, et al. Flexible organic light-emitting devices with copper nanowire composite transparent conductive electrode[J]. Journal of Materials Science, 2019, 54(3): 2343-2350.
    [21] ZHOU B, SU M J, YANG D Z, et al. Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance[J]. ACS Applied Materials & Interfaces,2020,12(36):40859-40869. doi: 10.1021/acsami.0c09020
    [22] WANG G H, HAO L L, ZHANG X D, et al. Flexible and transparent silver nanowires/biopolymer film for high-efficient electromagnetic interference shielding[J]. Journal of Colloid and Interface Science,2021,607:89-99.
    [23] ZOU X X, ZHAO M K, SHEN K Z, et al. Cellulose wrapped silver nanowire film with enhanced stability for transparent wearable heating and electromagnetic interference shielding[J]. Journal of Alloys and Compounds,2022,907:164360. doi: 10.1016/j.jallcom.2022.164360
    [24] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2 D transition metal carbides (MXenes)[J]. Science,2016,353(6304):1137-1140. doi: 10.1126/science.aag2421
    [25] LIU J J, ZHANG Y, CHENG W H, et al. Anti-fogging, frost-resistant transparent and flexible silver nanowire-Ti3C2Tx MXene based composite films for excellent electromagnetic interference shielding ability[J]. Journal of Colloid and Interface Science,2021,608:2493-2504.
    [26] ZHU X Z, XU J, QIN F, et al. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires[J]. Nanoscale,2020,12(27):14589-14597. doi: 10.1039/D0NR03790G
    [27] XIE Q D, YAN Z Y, WANG S Y, et al. Transparent, flexible, and stable polyethersulfone/copper-nanowires/polyethylene terephthalate sandwich-structured films for high-performance electromagnetic interference shielding[J]. Advanced Engineering Materials,2021,23(8):2100283. doi: 10.1002/adem.202100283
    [28] KIM S, OH J S, KIM M G, et al. Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition[J]. ACS Applied Materials & Interfaces,2014,6(20):17647-17653. doi: 10.1021/am503893v
    [29] KIM D G, CHOI J H, CHOI D K, et al. Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires[J]. ACS Applied Materials & Interfaces,2018,10(35):29730-29740. doi: 10.1021/acsami.8b07054
    [30] ZHU X Z, GUO A Q, YAN Z Y, et al. PET/Ag NW/PMMA transparent electromagnetic interference shielding films with high stability and flexibility[J]. Nanoscale,2021,13(17):8067-8076. doi: 10.1039/D1NR00977J
    [31] CHEN W, LIU L X, ZHANG H B, et al. Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding[J]. ACS Nano,2020,14(12):16643-16653. doi: 10.1021/acsnano.0c01635
    [32] BO R, ZHANG F, BU S, et al. One-step synthesis of porous transparent conductive oxides by hierarchical self-assembly of aluminum-doped ZnO nanoparticles[J]. ACS Applied Materials & Interfaces,2020,12(8):9589-9599. doi: 10.1021/acsami.9b19423
    [33] MATSUMURA M, CAMATA R P. Pulsed laser deposition and photoluminescence measurements of ZnO thin films on flexible polyimide substrates[J]. Thin Solid Films,2005,476(2):317-321. doi: 10.1016/j.tsf.2004.10.019
    [34] YUAN C W, HUANG J H, DONG Y X, et al. Record-high transparent electromagnetic interference shielding achieved by simultaneous microwave fabry-pérot interference and optical antireflection[J]. ACS Applied Materials & Interfaces,2020,12(23):26659-26669. doi: 10.1021/acsami.0c05334
    [35] EITE J, SPENCER A G. Indium tin oxide for transparent EMC shielding and anti-static applications[C]//Presented at EMCUK. Newbury, 2004.
    [36] SHEN Y, FENG Z C, ZHANG H Y. Study of indium tin oxide films deposited on colorless polyimide film by magnetron sputtering[J]. Mater Design,2020,193:108809. doi: 10.1016/j.matdes.2020.108809
    [37] KIM Y, HYEONG S K, CHOI Y, et al. Transparent and flexible electromagnetic interference shielding film using ITO nanobranches by internal scattering[J]. ACS Applied Materials & Interfaces,2021,13(51):61413-61421. doi: 10.1021/acsami.1c17967
    [38] WANG H Y, JI C G, ZHANG C, et al. Highly transparent and broadband electromagnetic interference shielding based on ultrathin doped ag and conducting oxides hybrid film structures[J]. ACS Applied Materials & Interfaces,2019,11(12):11782-11791. doi: 10.1021/acsami.9b00716
    [39] 梁圆龙, 黄贤俊, 姚理想, 等. 透明电磁屏蔽材料的研究进展[J]. 安全与电磁兼容, 2021(2):61-68. doi: 10.3969/j.issn.1005-9776.2021.02.012

    LIANG Yuanlong, HUANG Xianjun, YAO Lixiang, et al. Recent research advances on transparent electromagnetic shielding materials[J]. Safety EMC,2021(2):61-68(in Chinese). doi: 10.3969/j.issn.1005-9776.2021.02.012
    [40] LORDAN D, BURKE M, MANNING M, et al. Asymmetric pentagonal metal meshes for flexible transparent electrodes and heaters[J]. ACS Applied Materials & Interfaces,2017,9(5):4932-4940. doi: 10.1021/acsami.6b12995
    [41] HAN Y, LIN J, LIU Y X, et al. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding[J]. Scientific Reports,2016,6:25601. doi: 10.1038/srep25601
    [42] HAN Y, ZHONG H, LIU N, et al. In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding[J]. Advanced Electronic Materials,2018,4(11):1800156. doi: 10.1002/aelm.201800156
    [43] JIANG Z Y, ZHAO S Q, HUANG W B, et al. Embedded flexible and transparent double-layer nickel-mesh for high shielding efficiency[J]. Optics Express,2020,28(18):26531-26542. doi: 10.1364/OE.401543
    [44] KIM M H, JOH H, HONG S H, et al. Coupled Ag nanocrystal-based transparent mesh electrodes for transparent and flexible electro-magnetic interference shielding films[J]. Current Applied Physics,2019,19(1):8-13. doi: 10.1016/j.cap.2018.10.016
    [45] KIM T, PAK S, LIM J, et al. Electromagnetic interference shielding with 2 D Copper sulfide[J]. ACS Applied Materials & Interfaces,2022,14(11):13499-13506. doi: 10.1021/acsami.2c00196
    [46] JIANG C M, TAN D C, LI Q K, et al. High-performance and reliable silver nanotube networks for efficient and large-scale transparent electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2021,13(13):15525-15535. doi: 10.1021/acsami.1c00590
    [47] LIN S, WANG H, WU F, et al. Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding[J]. npj Flexible Electronics,2019(1):56-63.
    [48] ZHANG X, ZHONG Y L, YAN Y. Electrical, mechanical, and electromagnetic shielding properties of silver nanowire-based transparent conductive films[J]. Physica Status Solidi A — Applications and Materials Science,2018,215(14):1800014. doi: 10.1002/pssa.201800014
    [49] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [50] LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [51] LEE S, JO I, KANG S, et al. Smart contact lenses with graphene coating for electromagnetic interference shielding and dehydration protection[J]. ACS Nano,2017,11(6):5318-5324. doi: 10.1021/acsnano.7b00370
    [52] XU H, ANLAGE S M, HU L B, et al. Microwave shielding of transparent and conducting single-walled carbon nanotube films[J]. Applied Physics Letters,2007,90(18):183119. doi: 10.1063/1.2734897
    [53] YANG H H, WANG L L, WANG H Y, et al. Transparent and high-absolute-effectiveness electromagnetic interference shielding film based on single-crystal graphene[J]. Advanced Materials Technologies,2021,7(8):2101465.
    [54] CHOI J H, LEE K Y, KIM S W. Ultra-bendable and durable graphene-urethane composite/silver nanowire film for flexible transparent electrodes and electromagnetic-interference shielding[J]. Composites Part B: Engineering,2019,177:107406. doi: 10.1016/j.compositesb.2019.107406
    [55] YANG Y, CHEN S, LI W L, et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding[J]. ACS Nano,2020,14(7):8754-8765. doi: 10.1021/acsnano.0c03337
    [56] WANG G H, ZHAO Y, YANG F, et al. Multifunctional integrated transparent film for efficient electromagnetic protection[J]. Nano-Micro Letters, 2022, 14(5): 1-14.
    [57] LIU C, CHENG H M. Carbon nanotubes: controlled growth and application[J]. Materials Today,2013,16(1-2):19-28. doi: 10.1016/j.mattod.2013.01.019
    [58] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25 th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [59] ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes)[J]. ACS Nano,2015,9(10):9507-9516. doi: 10.1021/acsnano.5b03591
    [60] HALIM J, KOTA S, LUKATSKAYA M R, et al. Synthesis and characterization of 2 D molybdenum carbide (MXene)[J]. Advanced Functional Materials,2016,26(18):3118-3127. doi: 10.1002/adfm.201505328
    [61] SALLES P, QUAIN E, KURRA N, et al. Automated scalpel patterning of solution processed thin films for fabrication of transparent MXene microsupercapacitors[J]. Small,2018,14(44):1802864. doi: 10.1002/smll.201802864
    [62] HAN M, SHUCK C E, RAKHMANOV R, et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding[J]. ACS Nano,2020,14(4):5008-5016. doi: 10.1021/acsnano.0c01312
    [63] ZHOU B, LI Z Y, LI Y L, et al. Flexible hydrophobic 2 D Ti3C2Tx-based transparent conductive film with multifunctional self-cleaning, electromagnetic interference shielding and joule heating capacities[J]. Composites Science and Technology,2021,201:108531. doi: 10.1016/j.compscitech.2020.108531
    [64] JIN M, CHEN W, LIU L X, et al. Transparent, conductive and flexible MXene grid/silver nanowire hierarchical films for high-performance electromagnetic interference shielding[J]. Journal of Materials Chemistry A,2022,10(27):14364-14373. doi: 10.1039/D2TA03689D
    [65] MOUČKA R, SEDLAČÍK M, PROKEŠ J, et al. Electromagnetic interference shielding of polypyrrole nanostructures[J]. Synthetic Metals,2020,269:116573. doi: 10.1016/j.synthmet.2020.116573
    [66] NAZIR A. A review of polyvinylidene fluoride (PVDF), polyurethane (PU), and polyaniline (PANI) composites-based materials for electromagnetic interference shielding[J]. Journal of Thermoplastic Composite Materials, 2020, 35(1): 1-21.
    [67] GROENENDAAL L B, JONAS F, FREITAG D, et al. Poly(3, 4-ethylenedioxythiophene) and its derivatives: Past, present, and future[J]. Advanced Materials,2000,12(7):481-494. doi: 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
    [68] SU Z, JIN Y Z, WANG H M, et al. PEDOT: PSS and its composites for flexible supercapacitors[J]. ACS Applied Energy Materials,2022,5(10):11915-11932. doi: 10.1021/acsaem.2c01524
    [69] FAN X, NIE W Y, TSAI H, et al. PEDOT: PSS for flexible and stretchable electronics: Modifications, strategies, and applications[J]. Advanced Science,2019,6(19):1900813. doi: 10.1002/advs.201900813
    [70] HOSSEINI E, ARJMAND M, SUNDARARAJ U, et al. Filler-free conducting polymers as a new class of transparent electromagnetic interference shields[J]. ACS Applied Materials & Interfaces,2020,12(25):28596-28606. doi: 10.1021/acsami.0c03544
    [71] KIM N, KANG H, LEE J H, et al. highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method[J]. Advanced Materials,2015,27(14):2317-2323. doi: 10.1002/adma.201500078
    [72] ZHANG L W, ZHANG L J, QIU Y J, et al. Improved performance by SiO2 hollow nanospheres for silver nanowire-based flexible transparent conductive films[J]. ACS Applied Materials & Interfaces,2016,8(40):27055-27063. doi: 10.1021/acsami.6b07515
    [73] HU S W, GU J H, ZHAO W W, et al. Silver-nanowire mesh-structured transparent conductive film with improved transparent conductive properties and mechanical performance[J]. Advanced Materials Technologies,2019,4(8):1900194. doi: 10.1002/admt.201900194
    [74] HA B, JO S. Hybrid Ag nanowire transparent conductive electrodes with randomly oriented and grid-patterned Ag nanowire networks[J]. Scientific Reports,2017,7:11614. doi: 10.1038/s41598-017-11964-w
    [75] LIANG X W, LU J B, ZHAO T, et al. Facile and efficient welding of silver nanowires based on UVA-induced nanoscale photothermal process for roll-to-roll manufacturing of high-performance transparent conducting films[J]. Advanced Materials Interfaces,2018,6(3):1801635.
    [76] LIN S, WANG H Y, WU F, et al. Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding[J]. npj Flexible Electronics,2019,3(1):1-8.
    [77] PARK J H, HWANG G T, KIM S, et al. Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester[J]. Advanced Materials,2016,29(5):1603473.
    [78] LIANG X W, ZHAO T, ZHU P L, et al. Room-temperature nanowelding of a silver nanowire network triggered by hydrogen chloride vapor for flexible transparent conductive films[J]. ACS Applied Materials & Interfaces,2017,9(46):40857-40867. doi: 10.1021/acsami.7b13048
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  937
  • HTML全文浏览量:  457
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 修回日期:  2022-12-24
  • 录用日期:  2022-12-31
  • 网络出版日期:  2023-01-19
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回