留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维材料在盐湖提锂领域的研究进展

曾广勇 赵思邈 王宏山 林清泉

曾广勇, 赵思邈, 王宏山, 等. 二维材料在盐湖提锂领域的研究进展[J]. 复合材料学报, 2023, 40(6): 3125-3135. doi: 10.13801/j.cnki.fhclxb.20230119.001
引用本文: 曾广勇, 赵思邈, 王宏山, 等. 二维材料在盐湖提锂领域的研究进展[J]. 复合材料学报, 2023, 40(6): 3125-3135. doi: 10.13801/j.cnki.fhclxb.20230119.001
ZENG Guangyong, ZHAO Simiao, WANG Hongshan, et al. Research progress of two-dimensional materials in the field of lithium extraction from salt lake[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3125-3135. doi: 10.13801/j.cnki.fhclxb.20230119.001
Citation: ZENG Guangyong, ZHAO Simiao, WANG Hongshan, et al. Research progress of two-dimensional materials in the field of lithium extraction from salt lake[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3125-3135. doi: 10.13801/j.cnki.fhclxb.20230119.001

二维材料在盐湖提锂领域的研究进展

doi: 10.13801/j.cnki.fhclxb.20230119.001
基金项目: 四川省科技计划项目应用基础研究(2021YJ0401)
详细信息
    通讯作者:

    曾广勇,博士,研究员,硕士生导师,研究方向为新型膜材料的开发 E-mail:wuwu5125@163.com

  • 中图分类号: TQ050.4;TB332

Research progress of two-dimensional materials in the field of lithium extraction from salt lake

Funds: Applied Basic Research Programs of Science and Technology Commission Foundation of Sichuan Province (2021YJ0401)
  • 摘要: 近年来,随着新能源行业的大力发展,锂资源的供需矛盾加剧,合理开发利用锂资源正成为我国新能源发展的关键因素。盐湖卤水因其具备成本低、储量多的优势逐渐成为我国提锂行业的发展方向。二维材料是指电子仅可在两个维度的非纳米尺度(1~100 nm)上平面运动的材料。由于二维纳米材料具备原子级尺度的特殊片层结构、高比表面积、优异的机械强度、丰富的活性位点及良好的可修饰性等特点,得到了科学界的广泛关注。本文从不同二维材料的特点出发,归纳了二维材料在吸附法提锂和膜分离法提锂两个领域的应用,总结了两种方法的特点,并指出其目前面临的问题及今后的发展趋势,为二维材料在盐湖提锂领域的研究与应用提供参考。

     

  • 图  1  常见二维层状材料[15]

    Figure  1.  Common two-dimensional laminate materials[15]

    TMDS—Transition metal dichaolcogenides

    图  2  (a) 交联聚(N-异丙基丙烯酰胺-共-丙烯酰胺苯并-18-冠醚-6)功能化MOF-808(pNCE/MOF-808)吸附剂对单价金属离子的选择性吸附;(b) 适宜温度下的解吸示意图[44]

    Figure  2.  (a) Selective adsorption of monovalent metal ions by A crosslinked poly (N-isopropylacrylamide-co-acryloylamidobenzo-18-crown-6) functionalized MOF-808 (pNCE/MOF-808) adsorbent; (b) Schematic diagram of desorption at suitable temperature[44]

    AmB18C6—acryloylamidobenzo-18-crown-6; pNIPAM—Poly N-isopropylacrylamide

    图  3  二维膜筛分机制[50]

    Figure  3.  Two-dimensional membrane sieving mechanism[50]

    a—Thickness; d—Interlayer space; l1, l2—Lateral size

    图  4  (a) 原始氧化石墨烯(GO)膜和GO-聚乙烯亚胺(PEI)膜表面的Zeta电位;(b) 不同盐浓度对GO-PEI膜选择性的影响[55]

    Figure  4.  (a) Zeta potential on the surface of pristine graphene oxide (GO) and GO-polyethylenimide (PEI) membranes; (b) Effect of different salt concentrations on the selectivity of GO-PEI membranes[55]

    图  5  (a) ZIF-8的晶体结构示意图;(b) ZIF-8离子传输及脱水-水合机制示意图;(c) 原始ZIF-8膜的离子选择性和磺化螺吡喃(SSP)@ZIF-8膜选择性比较;(d) 不同SSP含量的SSP@ZIF-8膜的不同离子电导率[58-59]

    Figure  5.  (a) Schematic diagram of the crystal structure of ZIF-8; (b) Schematic diagram of the ion transport and dehydration-hydration mechanism of ZIF-8; (c) Comparison of ion selectivity of pristine ZIF-8 membrane and sulfonated spiropyran (SSP)@ZIF-8 membrane selectivity; (d) Different ionic conductivities of SSP@ZIF-8 membrane with different SSP contents[58-59]

    dion—Dehydrated ionic diameters; dPore—Diameter of the ion transport pore; dH-ion—Hydrated ionic diameter; SSP@ZIF-8-10%—SSP@ZIF-8 with 10wt%SSP content

    图  6  (a) MXene/聚4-苯乙烯磺酸钠(PSS)复合膜中Li+的快速传输通道示意图;(b) PSS含量对复合膜分离性能的影响;(c) MXene/PSS复合膜的长期稳定性[63]

    Figure  6.  (a) Schematic diagram of the fast transport channel of Li+ in the MXene/polysodium 4-styrene sulfonate (PSS) composite membrane; (b) Effect of PSS content on the separation performance of the composite membrane; (c) Long-term stability of MXene/PSS composite membrane[63]

  • [1] 周久龙, 树银雪. 我国盐湖卤水提锂产业化现状及发展建议[J]. 化工矿物与加工, 2022, 52(1):57-62.

    ZHOU Jiulong, SHU Yinxue. Present situation and development suggestions of lithium extraction from salt lake brine in China[J]. Iindustrial Minerals& Processing,2022,52(1):57-62(in Chinese).
    [2] AMBROSE H, KENDALL A. Understanding the future of lithium: Part 1, resource model[J]. Journal of Industrial Ecology,2020,24(1):80-89. doi: 10.1111/jiec.12949
    [3] KESLER S E, GRUBER P W, MEDINA P A, et al. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews,2012,48:55-69. doi: 10.1016/j.oregeorev.2012.05.006
    [4] 赵旭, 张琦, 武海虹, 等. 盐湖卤水提锂[J]. 化学进展, 2017, 29(7):796-808.

    ZHAO Xu, ZHANG Qi, WU Haihong, et al. Extraction of lithium from salt lake brine[J]. Progress in Chemistry,2017,29(7):796-808(in Chinese).
    [5] 钟辉, 殷辉安. 偏钛酸型锂离子交换剂表面性质与选择吸附性研究[J]. 离子交换与吸附, 2003(1):55-60. doi: 10.3321/j.issn:1001-5493.2003.01.009

    ZHONG Hui, YIN Huian. Study on the properties of the surface and absorpt of Li+ ion- exchanger of H2TiO3 type[J]. Ion Exchange and Adsorption,2003(1):55-60(in Chinese). doi: 10.3321/j.issn:1001-5493.2003.01.009
    [6] 韩继龙, 曾祥杰, 王奎虎, 等. 复合膜材料在盐湖提锂中的研究进展和展望[J]. 复合材料学报, 2022, 39(5):2106-2120.

    HAN Jilong, ZENG Xiangjie, WANG Kuihu, et al. Research progress and prospect of membrane method in seawater/brine extraction of lithium[J]. Acta Materiae Compositae Sinica,2022,39(5):2106-2120(in Chinese).
    [7] 葛涛, 徐亮, 孟金伟, 等. 盐湖卤水提锂工艺技术研究进展[J]. 有色金属工程, 2021, 11(2):55-62.

    GE Tao, XU Liang, MENG Jinwei, et al. Research progress of lithium extraction technology from salt lake brine[J]. Nonferrous Metals Engineering,2021,11(2):55-62(in Chinese).
    [8] 李志录, 王敏, 赵有璟, 等. 膜特征对锂资源提取过程的影响[J]. 化工进展, 2021, 40(9):5061-5072.

    LI Zhilu, WANG Min, ZHAO Youjing, et al. Effects of membrane characteristics for lithium extraction[J]. Chemical Industry and Engineering Progress,2021,40(9):5061-5072(in Chinese).
    [9] MANNIX A J, KIRALY B, HERSAM M C, et al. Synthesis and chemistry of elemental 2D materials[J]. Nature Reviews Chemistry,2017,1(2):1-14. doi: 10.1038/s41570-016-0014
    [10] MOMENI K, JI Y, WANG Y, et al. Multiscale computational understanding and growth of 2D materials: A review[J]. npj Computational Materials,2020,6(1):1484-1501. doi: 10.1038/s41524-020-0280-2
    [11] 曾广勇, 王彬, 张俊, 等. 二维MXene膜的构筑及在水处理应用中的研究进展[J]. 复合材料学报, 2021, 38(7):2078-2091.

    ZENG Guangyong, WANG Bin, ZHANG Jun, et al. Construction of two-dimensional MXene membrane and its research progress of application in water treatment[J]. Acta Materiae Compositae Sinica,2021,38(7):2078-2091(in Chinese).
    [12] 赵而法, 华旭江, 亓东美, 等. 二维插层功能材料的制备及应用研究进展[J]. 化工新型材料, 2022, 50(5):32-37.

    ZHAO Erfa, HUA Xujiang, QI Dongmei, et al. Advance in the preparation and application of 2D intercalated functional material[J]. New Chemical Materials,2022,50(5):32-37(in Chinese).
    [13] QUE H, JIANG H, WANG X, et al. Utilization of the van der waals gap of 2D materials[J]. Acta Physico-Chimica Sinica, 2021, 37(11): 2010051.
    [14] WANG J, ZHANG L, ZHANG T, et al. Selective removal of heavy metal ions in aqueous solutions by sulfide-selector intercalated layered double hydroxide adsorbent[J]. Jour-nal of Materials Science & Technology, 2019, 35(9): 1809-1816.
    [15] LI X, WANG J. One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion[J]. InfoMat, 2020, 2(1): 3-32.
    [16] ZHANG P, MA L, FAN F, et al. Fracture toughness of graphene[J]. Nature Communications,2014,5(1):3782. doi: 10.1038/ncomms4782
    [17] SU Y, KRAVETS V G, WONG S L, et al. Impermeable barrier films and protective coatings based on reduced graphene oxide[J]. Nature Communications, 2014, 5(1): 4843.
    [18] 胡晓兰, 周川, 代少伟, 等. 氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能[J]. 复合材料学报, 2020, 37(5):1070-1080.

    HU Xiaolan, ZHOU Chuan, DAI Shaowei, et al. Micro-structures and dynamic thermal mechanical properties of graphene oxide modified carbon fiber/epoxy composites with different fiber surface properties[J]. Acta Materiae Compositae Sinica,2020,37(5):1070-1080(in Chinese).
    [19] ZHANG Q, HOU Q, HUANG G, et al. Removal of heavy metals in aquatic environment by graphene oxide compo-sites: A review[J]. Environmental Science and Pollution Research,2020,27(1):190-209. doi: 10.1007/s11356-019-06683-w
    [20] YUAN S, HUANG L, HUANG Z, et al. Continuous variation of lattice dimensions and pore sizes in metal-organic frameworks[J]. Journal of the American Chemical Society,2020,142(10):4732-4738. doi: 10.1021/jacs.9b13072
    [21] PENG Y, ZHAO M, CHEN B, et al. Hybridization of MOFs and COFs: A new strategy for construction of MOF@COF core-shell hybrid materials[J]. Advanced Materials,2018,30(3):1705454. doi: 10.1002/adma.201705454
    [22] LU Y Q, LIU W, LIU J T, et al. A review on 2D porous organic polymers for membrane-based separations: Processing and engineering of transport channels[J]. Advanced Membranes,2021,1:100014.
    [23] 刘超, 李茜, 郝丽芬, 等. MXene的功能化改性及其应用研究进展[J]. 复合材料学报, 2021, 38(4):1020-1028.

    LIU Chao, LI Xi, HAO Lifen, et al. Research progress of functional modification of MXene and its applications[J]. Acta Materiae Compositae Sinica,2021,38(4):1020-1028(in Chinese).
    [24] ZOU H, HE B, KUANG P, et al. Metal-organic framework-derived nickel-cobalt sulfide on ultrathin Mxene nanosheets for electrocatalytic oxygen evolution[J]. ACS Applied Materials & Interfaces,2018,10(26):22311-22319.
    [25] LIN Q, ZENG G, YAN G, et al. Self-cleaning photocatalytic MXene composite membrane for synergistically enhanced water treatment: Oil/water separation and dyes removal[J]. Chemical Engineering Journal,2022,427:131668. doi: 10.1016/j.cej.2021.131668
    [26] JOHN Z C, SERGIO P, NIALL M, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes)[J]. Chemistry of Materials, 2017, 29(11): 4848-4856.
    [27] ZHANG X, YUAN X, JIANG L, et al. Powerful combination of 2D g-C3N4 and 2D nanomaterials for photocatalysis: Recent advances[J]. Chemical Engineering Journal,2020,390:124475. doi: 10.1016/j.cej.2020.124475
    [28] ZENG G, HE Z, WAN T, et al. A self-cleaning photocatalytic composite membrane based on g-C3N4@MXene nanosheets for the removal of dyes and antibiotics from wastewater[J]. Separation and Purification Technology,2022,292:121037. doi: 10.1016/j.seppur.2022.121037
    [29] GUSAIN R, KUMAR N, FOSSO-KANKEU E, et al. Efficient removal of Pb(II) and Cd(II) from industrial mine water by a hierarchical MoS2/SH-MWCNT nanocomposite[J]. ACS Omega,2019,4(9):13922-13935. doi: 10.1021/acsomega.9b01603
    [30] 王艳芝, 张旺玺, 孙长红, 等. 氮化硼系列材料的合成制备及应用研究进展[J]. 陶瓷学报, 2018, 39(6): 661-671.

    WANG Yanzhi, ZHANG Wangxi, SUN Changhong, et al. The development of the applications and synthesis of boron nitride materials[J]. Journal of Ceramics, 2018, 39(6): 661-671(in Chinese).
    [31] VIKRANT Y, VAIBHAV K. Boron nitride: A promising material for proton exchange membranes for energy applications[J]. Nanoscale, 2019, 11(27): 12755-12773.
    [32] 崔世强, 阚洪敏, 张宁, 等. 六方氮化硼的制备应用及研究进展[J]. 功能材料, 2020, 51(8):8072-8077. doi: 10.3969/j.issn.1001-9731.2020.08.011

    CUI Shiqiang, KAN Hongmin, ZHANG Ning, et al. Preparation, application and research progress of hexagonal boron nitride[J]. Jorunal of Functional Materials,2020,51(8):8072-8077(in Chinese). doi: 10.3969/j.issn.1001-9731.2020.08.011
    [33] 杨正芳, 张悦, 蔡金霄, 等. 层状双金属氢氧化物及其复合材料的制备与应用研究新进展[J]. 材料导报, 2021, 35(19):19062-19069. doi: 10.11896/cldb.19120181

    YANG Zhengfang, ZHANG Yue, CAI Jinxiao, et al. Recent advances in the preparation and application of layered double hydroxides and their composites[J]. Materials Reports,2021,35(19):19062-19069(in Chinese). doi: 10.11896/cldb.19120181
    [34] LAIPAN M, YU J, ZHU R, et al. Functionalized layered double hydroxides for innovative applications[J]. Materials Horizons,2020,7(3):715-745. doi: 10.1039/C9MH01494B
    [35] MAO N, ZHOU C H, TONG D S, et al. Exfoliation of layered double hydroxide solids into functional nanosheets[J]. Applied Clay Science,2017,144:60-78.
    [36] 吕维扬, 孙继安, 姚玉元, 等. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12):2049-2063. doi: 10.7536/PC200404

    LV Weiyang, SUN Ji'an, YAO Yuyuan, et al. Morphology control of layered double hydroxide and its application in water remediation[J]. Progress in Chemistry,2020,32(12):2049-2063(in Chinese). doi: 10.7536/PC200404
    [37] SUN Y, WANG Q, WANG Y, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine[J]. Separation and Purification Technology,2021,256:117807. doi: 10.1016/j.seppur.2020.117807
    [38] KONG Q, PREIS S, LI L, et al. Relations between metal ion characteristics and adsorption performance of graphene oxide: A comprehensive experimental and theoretical study[J]. Separation and Purification Technology, 2020, 232: 115956.
    [39] PENG W, LI H, LIU Y, et al. A review on heavy metal ions adsorption from water by graphene oxide and its compo-sites[J]. Journal of Molecular Liquids,2017,230:496-504.
    [40] CHENG M M, YAO C X, SU Y, et al. Synthesis of membrane-type graphene oxide immobilized manganese dioxide adsorbent and its adsorption behavior for lithium ion[J]. Chemosphere,2021,279:130487.
    [41] YANG X, WAN Y, ZHENG Y, et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review[J]. Chemical Engineering Journal,2019,366:608-621.
    [42] LI X W, CHEN L, CHAO Y H, et al. Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene[J]. Desalination,2022,537:115847.
    [43] PARK S H, KIM K, LIM J H, et al. Selective lithium and magnesium adsorption by phosphonate metal-organic framework-incorporated alginate hydrogel inspired from lithium adsorption characteristics of brown algae[J]. Separation and Purification Technology,2019,212:611-618.
    [44] ZHANG S, OU R, MA H, et al. Thermally regenerable metal-organic framework with high monovalent metal ion selectivity[J]. Chemical Engineering Journal,2021,405:127037. doi: 10.1016/j.cej.2020.127037
    [45] ZHANG Y J, WANG L, ZHANG N N, et al. Adsorptive environmental applications of MXene nanomaterials: A review[J]. RSC Advances, 2018, 8(36): 2046-2069.
    [46] MA C, DU Y, DU B, et al. Investigation of an eco-friendly aerogel as a substrate for the immobilization of MoS2 nanoflowers for removal of mercury species from aqueous solutions[J]. Journal of Colloid and Interface Science,2018,525:251-259. doi: 10.1016/j.jcis.2018.04.079
    [47] NUNES S P, CULFAZ-EMECEN P Z, RAMON G Z, et al. Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes[J]. Journal of Membrane Science,2020,598:117761. doi: 10.1016/j.memsci.2019.117761
    [48] ZENG G, WEI K, ZHANG H, et al. Ultra-high oil-water separation membrane based on two-dimensional MXene (Ti3C2Tx) by co-incorporation of halloysite nanotubes and polydopamine[J]. Applied Clay Science,2021,211:106177. doi: 10.1016/j.clay.2021.106177
    [49] TANSEL B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects[J]. Separation and Purification Technology,2012,86:119-126.
    [50] CHENG L, LIU G, ZHAO J, et al. Two-dimensional-material membranes: Manipulating the transport pathway for molecular separation[J]. Accounts of Materials Research,2021,2(2):114-128. doi: 10.1021/accountsmr.0c00092
    [51] GUO Y, YING Y L, MAO Y Y, et al. polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J]. Angewandte Chemie, 2016, 128(48): 15120-15124.
    [52] XIE L, TANG J, QIN R, et al. Surface charge modification on 2D nanofluidic membrane for regulating ion transport[J]. Advanced Functional Materials,2022,33(4):2208959.
    [53] AN D, YANG L, WANG T, et al. Separation performance of graphene oxide membrane in aqueous solution[J]. Industrial & Engineering Chemistry Research,2016,55(17):4803-4810.
    [54] HADI A, MOHAMMAD Z, EHSAN H, et al. Heterogeneous asymmetric passable cavities within graphene oxide nanochannels for highly efficient lithium sieving[J]. Desalination,2022,538:115888.
    [55] WEI Z, QINGBO H, SONG L, et al. Graphene oxide membrane regulated by surface charges and interlayer channels for selective transport of monovalent ions over divalent ions[J]. Separation and Purification Technology,2022,291:120938.
    [56] HADI A, EHSAN H, WITHITA C, et al. Incorporation of natural lithium-ion trappers into graphene oxide nanosheets[J]. Advanced Materials Technologies, 2020, 6(10): 2000665.
    [57] XU T T, SHEHZAD M A, YU D B, et al. Highly cation permselective metal-organic framework membranes with leaf-like morphology[J]. ChemSusChem, 2019, 12(12): 2593-2597.
    [58] ZHANG H, HOU J, HU Y, et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores[J]. Science Advances, 2018, 4(2): eaaq0066.
    [59] LIANG H, GUO Y, PENG X, et al. Light-gated cation-selective transport in metal-organic framework membranes[J]. Journal of Materials Chemistry A,2020,8(22):11399-11405. doi: 10.1039/D0TA02895A
    [60] SHENG F M, WU B, LI X Y, et al. Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels[J]. Advanced Materials (Deerfield Beach, Fla. ), 2021, 33(44): e2104404.
    [61] BING S S, XIAN W P, CHEN S F, et al. Bio-inspired construction of ion conductive pathway in covalent organic framework membranes for efficient lithium extraction[J]. Matter, 2021, 4(6): 2027-2038.
    [62] ZENG G, LIU Y, LIN Q, et al. Constructing composite membranes from functionalized metal organic frameworks integrated MXene intended for ultrafast oil/water emulsion separation[J]. Separation and Purification Technology,2022,293:121052. doi: 10.1016/j.seppur.2022.121052
    [63] WANG H, LU Z, WU Y, et al. A lamellar MXene (Ti3C2Tx)/PSS composite membrane for fast and selective lithium-ion separation[J]. Angewandte Chemie, 2021, 60(41): 22265-22269.
    [64] ZHANG C, MU Y, ZHANG W, et al. PVC-based hybrid membranes containing metal-organic frameworks for Li+/Mg2+ separation[J]. Journal of Membrane Science,2020,596:117724. doi: 10.1016/j.memsci.2019.117724
    [65] BI Q Y, ZHANG C, LIU J D, et al. Positively charged zwitterion-carbon nitride functionalized nanofiltration membranes with excellent separation performance of Mg2+/Li+ and good antifouling properties[J]. Separation and Purification Technology, 2020, 257: 117959.
  • 加载中
图(6)
计量
  • 文章访问数:  893
  • HTML全文浏览量:  414
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2022-12-08
  • 录用日期:  2023-01-03
  • 网络出版日期:  2023-01-19
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回