留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料的力学理论

黄争鸣

黄争鸣. 复合材料的力学理论[J]. 复合材料学报, 2023, 40(6): 3090-3114. doi: 10.13801/j.cnki.fhclxb.20230117.007
引用本文: 黄争鸣. 复合材料的力学理论[J]. 复合材料学报, 2023, 40(6): 3090-3114. doi: 10.13801/j.cnki.fhclxb.20230117.007
HUANG Zhengming. Mechanics theories for composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3090-3114. doi: 10.13801/j.cnki.fhclxb.20230117.007
Citation: HUANG Zhengming. Mechanics theories for composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3090-3114. doi: 10.13801/j.cnki.fhclxb.20230117.007

复合材料的力学理论

doi: 10.13801/j.cnki.fhclxb.20230117.007
基金项目: 国家自然科学基金(11832014)
详细信息
    通讯作者:

    黄争鸣,博士,教授,博士生导师,研究方向为复合材料力学、复合材料加工 E-mail: huangzm@tongji.edu.cn

  • 中图分类号: O34;TB330.1

Mechanics theories for composite materials

Funds: National Natural Science Foundation of China (11832014)
  • 摘要: 各向同性材料的力学理论已基本完善,但各向异性复合材料的力学理论除线弹性外,皆未成熟,尤其破坏和强度分析,依然还是固体力学面临的一个最大挑战。在过去25年中,为推动复合材料力学学科发展,作者创建了一系列解析理论,包括任意连续纤维、短纤维及颗粒增强复合材料的本构与内应力计算理论-桥联模型,将基体均值应力转换到真实值的真实应力理论,基于物理原理建立的基体破坏准则,预报任意层合结构层间开裂或分层的层间基体应力修正法及超弹性材料的增量型本构理论。基于这些理论,几乎所有两相复合材料的破坏问题,皆有望通过解析公式获得有效解决,只要该复合材料的孔隙率可忽略。其中,桥联模型已得到国内外同行广泛认可,他人应用该理论公开发表的研究论文,已超过250篇。基体真实应力理论,尽管前不久才建立起来,他人应用也已达20篇。本文简要介绍了作者建立的这些理论及如何据此解决众多复合材料挑战性问题。

     

  • 图  1  连续纤维 (a) 和短纤维复合材料 (b) 的代表性单元(RVE)(l/a≈1对应颗粒复合材料)

    Figure  1.  Representative unit (RVE) of a continuous fiber composite (a) and a short fiber composite (b) (l/a≈1 corresponds to a particle composite)

    a—Fiber radius; b—Matrix radius; L—Half length of matrix; l—Half length of fiber; Vf—Fiber volume fraction; (r, q, z)—Cylindrical coordinates; (x1, x2, x3)—Rectandular coordinates; Ω1—A portion of RVE with fiber; Ω2—A portion of RVE without fiber

    图  14  复合材料结构破坏和强度分析流程图

    Figure  14.  A flow chart to show failure analysis and strength predictions for any composite structure

    图  2  超弹性本构模型预报与Treloar的橡胶实验[73]对比:(a) 模量-名义应变(E-εe)曲线;(b) 泊松比-名义应变(ν-εe)曲线;((c)~(e)) 单轴拉伸实验拟合模型参数后预报的单轴拉伸、等值双轴拉伸、纯剪切直到破坏的曲线与实验对比;((f)~(h)) 等值双轴拉伸实验拟合模型参数后预报的单轴拉伸、等值双轴拉伸、纯剪切直到破坏的曲线与实验对比;((i)~(k)) 纯剪切实验拟合模型参数后预报的单轴拉伸、等值双轴拉伸、纯剪切直到破坏的曲线与实验对比

    Figure  2.  Hyperelastic theories verified through Treloar’s test data on a rubber[73]: (a) Modulus versus equivalent strain (E-εe) curves; (b) Poisson’s ratio versus equivalent strain (ν-εe) curves; ((c)-(e)) Comparisons between the measured and predicted uniaxial tension, equalbiaxial tension and pure shear curves by different models fitted with uniaxial tension test data; ((f)-(h)) Comparisons between the measured and predicted uniaxial tension, equalbiaxial tension, pure shear curves by different models fitted with equalbiaxial tension test data; ((i)-(k)) Comparisons between the measured and predicted uniaxial tension, equalbiaxial tension, pure shear curves by different models fitted with pure shear test data

    图  3  对应不同标度应力的复合材料性能示意图

    Figure  3.  Schematic disgram to show composite properties at different scales of stresses

    σ—Stress; ε—Strain; E—Elastic modulus; ET—Hardening modulus

    图  4  RVE界面开裂后纤维和基体之间相对滑移示意图:(a) 纵截面;(b) 横界面

    Figure  4.  Schematic of relative slippage displacement between debonded fiber and matrix interfaces in a RVE: (a) Longitudinal cross-section; (b) Transverse cross-section

    D, D', F—Label of the point; σ12 0—In-plane shear stress applied on the RVE; d—Relatic slippage displacement between debonded fiber and matrix interfaces; Ψ—Half debonding angle

    图  5  机织纤维 (a)、针织纤维 (b)、短纤维增强复合材料 (c) 重复单胞示意图

    Figure  5.  A repeating unit cell for woven fabric composite (a), knitted fabric composite (b), short fiber reinforced composite (c)

    图  6  单向层合板 (a)[88]、多向层合板 (b)[89]中的富树脂界面层

    Figure  6.  Rech resin interlayer in unidirectional laminate (a), muldirectional laminate (b)

    图  7  层合板的双悬臂梁(DCB) (a) 和端部开口弯曲(ENF) (b) 实验和有限元模拟

    Figure  7.  Experimental and finite element approaches on double cantilever beam (DCB) (a) and end-notched flexure (ENF) (b) samples

    H—Thickness of the sample; PI, PII—Peak load of DCB, ENF ; δI, δII—Corresponding displacement; a0—Length of an initial crack

    图  8  (a) 轴向拉伸引起的纤维撕裂破坏;(b) 轴向压缩引起的纤维偏折破坏[91];(c) 轴向加载在纤维偏折坐标系的应力分量

    Figure  8.  (a) Fiber splitting failure under a longitudinal tension; (b) Fiber kinking failure under a longitudinal compression[91]; (c) A longitudinal load induced stress components in the misaligned coordinate system

    σL—Axial stress; τ—Shear stress; $\theta_0^{{\rm{f}},0} $—Initial fiber misalignment angle; σT—Transverse stress; $x_1^{\rm{I}} $, $x_2^{\rm{I}} $—Misaligned coordinate system

    图  9  (a) 基体斜截面上拉伸正应力对应的破坏应力状态;(b) 拉伸破坏面包络线由基体拉伸和剪切强度构建的抛物线近似

    Figure  9.  (a) Failure stress state of an inclined cross-section with a positive outward normal stress; (b) Tensile failure envelope approaximated by a parabola determined from matrix’s tensile and shear strengths

    图  10  单向复合材料受横向压缩破坏图

    Figure  10.  Failure disgram of a unidirectional composite under a transverse compression

    x2—Load direction; x3—Fiber direction

    图  11  基体压缩引起的复合材料破坏示意图

    Figure  11.  Schematic of a matrix compression induced composite failure

    {σ11, σ22,...}—Stresses on a unidirectional composite composite; {σn, τnt, τns}—Normal and two shear stresses of the composite on an inclined cross-section; {$\tau _{\rm nt}^{\rm{m}} $, $\tau _{\rm n}^{\rm{m}} $, $\tau _{\rm ns}^{\rm{m}} $}—Normal and two shear stresses of the matrix on the inclined cross-section

    图  12  复合材料弱奇异和应力集中截面邻域示意图(t为主层厚)

    Figure  12.  Schematic neibourhoods of weak singularity and stress concentration points in a composite (t is the thickness of a primary layer)

    图  13  任意纤维(编织纤维结构为例)复合材料结构分析示意图

    Figure  13.  Schematic diagram to shown structural analysis for any fibrous composite structure (Using braided fabric composite as an examble)

    表  1  复合材料破坏分类

    Table  1.   Classification for composite failures

    ModeCharacteristics
    Fatal failureFiber tensile failure in a primary layer
    Fiber compressive failure in a primary layer
    Fiber splitting or kinking failure in a primary layer
    Non-fatal failureMatrix tensile failure in a primary layer
    Matrix compressive failure in a primary layer
    Damage type failureInterface crack between fiber and matrix
    Delamination between adjacent primary layers
    Non-fatal failure in a laminated composite
    Strength type failureThere is a fatal failure
    A critical strain is attained after a non-fatal failure
    Ultimate failure of composite structureA strength type failure occurs outside neighborhoods of stress singularity (constrained boundary, loading point, etc.) and week singularity (hole edge, free edge, tapered laminate, etc.)
    下载: 导出CSV

    表  2  复合材料结构破坏与强度分析所需材料性能数据

    Table  2.   Material property parameters needed for failure and strength analysis of a composite structure

    PropertySourceRemark
    Fiber elastic constantsMaterial data sheet/fiber supplier/tests on UDEach fiber must provide 5 elastic constants (for transversely isotropic). Can be retrieved from Eqs. (12).
    Fiber tensile & compressive strengthsTests on UD/fiber supplier/material data sheetEach fiber must provide 2 strengths. Can be retrieved from Eqs. (55.1) and (55.2).
    Matrix elastic constantsTests on casting samples of matrix/matrix supplierEach matrix must provide its Young’s modulus and Poisson’s ratio
    Matrix tensile & shear strengthsTests on casting samples of matrixEach matrix must provide its measured tensile and shear strengths, with shear better obtained on Iosipescu method
    Matrix compressive strengthTransverse compressive strength of UD/test on matrix/matrix supplierEach matrix must provide its compressive strength, best retrieved from Eq. (55.3) with $ K_{22}^c $ determined by Eqs. (56)[50,97]
    Matrix tensile curveTest on casting sample of matrixDefine matrix tensile yield strength and hardening moduli, as long as the piece linear segments are near to the curve
    Matrix compress. curveTest on casting sample of matrixDefine matrix compressive yield strength and hardening moduli, as long as piece linear segments near to the curve
    UD transverse tensile strengthTest on UDEach composite system must provide its transverse tensile strength to understand interface bonding status
    Critical displacements
    δI and δII
    DCB and ENF testsPreferably each pair of two different materials used in the structure should provide the DCB and ENF test data
    Fiber initial misalignment$\theta_c^{f,0} $=1.50Empirical data
    Neighborhood rangesn1=4, n2=24Empirical data
    Note: UD—Unidirectional composite.
    下载: 导出CSV
  • [1] WANG Y C, HUANG Z M. Analytical micromechanics models for elastoplastic behavior of long fibrous compo-sites: A critical review and comparative study[J]. Materials,2018,11(10):1919. doi: 10.3390/ma11101919
    [2] HAHN H T, TSAI S W. Nonlinear elastic behaviour of unidirectional composite laminates[J]. Journal of Compo-site Materials,1973,7:102-110. doi: 10.1177/002199837300700108
    [3] SUN C T, CHEN J L. A micromechanical model for plastic behavior of fibrous composites[J]. Composites Science and Technology,1991,40(2):115-129. doi: 10.1016/0266-3538(91)90092-4
    [4] MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica,1973,21:571-574. doi: 10.1016/0001-6160(73)90064-3
    [5] HILL R. A self-consistent mechanics of composite materials[J]. Journal of the Mechanics and Physics of Solids,1965,13:213-222. doi: 10.1016/0022-5096(65)90010-4
    [6] HASHIN Z, ROSEN B W. The elastic moduli of fiber-reinforced materials[J]. Journal of Applied Mechanics,1964,31:223-232. doi: 10.1115/1.3629590
    [7] CHRISTENSEN R M, LO K H. Solutions for effective shear properties in three phase sphere and cylinder models[J]. Journal of the Mechanics and Physics of Solids,1979,27:315-330. doi: 10.1016/0022-5096(79)90032-2
    [8] HORI M, NEMAT-NASSER S. Double-inclusion model and overall moduli of multi-phase composites[J]. Journal of Engineering Materials and Technology,1994,116:305-309. doi: 10.1115/1.2904292
    [9] HU G K, WENG G J. The connections between the double inclusion model and the Ponte Castaneda-Wills, Mori-Tanaka, and Kuster-Toksoz models[J]. Mechanics of Materials,2000,32:495-503. doi: 10.1016/S0167-6636(00)00015-6
    [10] ABOUTAJEDDINE A, NEALE K W. The double inclusion model a new formulation and new estimates[J]. Mecha-nics of Materials,2005,37:331-341. doi: 10.1016/j.mechmat.2003.08.016
    [11] WANG Y C, HUANG Z M. A new approach to a bridging tensor[J]. Polymer Composites,2015,36:1417-1431. doi: 10.1002/pc.23048
    [12] WANG Y C, HUANG Z M. Bridging tensor with an imperfect interface[J]. European Journal of Mechanics-A/Solids,2016,56:73-91. doi: 10.1016/j.euromechsol.2015.10.006
    [13] ABOUDI J. Mechanics of composite materials: A unified micromechanical approach[M]. Amsterdam: Elsevier, 2013.
    [14] GHORBANI M M, ACHUTHAN A, BEDNARCYK B A, et al. A multi-scale computational model using generalized method of cells (GMC) homogenization for multi-phase single crystal metals[J]. Computational Materials Science,2015,96:44-55. doi: 10.1016/j.commatsci.2014.08.045
    [15] CAVALCANTE M A A, PINDERA M J. Generalized finite-volume theory for elastic stress analysis in solid mechanics—Part I: Framework[J]. Journal of Applied Mechanics,2012,79:051006. doi: 10.1115/1.4006805
    [16] CAVALCANTE M A A, PINDERA M J. Generalized finite-volume theory for elastic stress analysis in solid mechanics—Part II: Results[J]. Journal of Applied Mechanics,2012,79:051007. doi: 10.1115/1.4006806
    [17] DEMIRDŽIĆ I. A fourth-order finite volume method for structural analysis[J]. Applied Mathematical Modelling,2016,40:3104-3114. doi: 10.1016/j.apm.2015.09.098
    [18] DOGHRI I, OUAAR A. Homogenization of two-phase elasto-plastic composite materials and structures—Study of tangent operators, cyclic plasticity and numerical algorithms[J]. International Journal of Solids & Structures,2003,40:1681-1712. doi: 10.1016/S0020-7683(03)00013-1
    [19] REKIK A, BORNERT M, AUSLENDER F. A critical evaluation of local field statistics predicted by various linearization schemes in nonlinear mean-field homogenization[J]. Mechanics of Materials,2012,54:1-17. doi: 10.1016/j.mechmat.2012.05.011
    [20] KANAUN S. An efficient homogenization method for composite materials with elasto-plastic components[J]. International Journal of Engineering Science,2012,57:36-49. doi: 10.1016/j.ijengsci.2012.04.005
    [21] GAVAZZI A C, LAGOUDAS D C. On the numerical evaluation of Eshelby's tensor and its application to elastoplastic fibrous composites[J]. Computational Mechanics,1990,7(1):13-19. doi: 10.1007/BF00370053
    [22] HUANG Z M. A unified micromechanical model for the mechanical properties of two constituent composite materials, Part I: Elastic behavior[J]. Journal of Thermoplastic Composite Materials,2000,13(4):252-271. doi: 10.1177/089270570001300401
    [23] HUANG Z M. A unified micromechanical model for the mechanical properties of two constituent composite materials, Part II: Plastic behavior[J]. Journal of Thermoplastic Composite Materials,2000,13(5):344-362. doi: 10.1106/74AD-GXYK-6NQH-L2AV
    [24] HUANG Z M. Micromechanical prediction of ultimate strength of transversely isotropic fibrous composites[J]. International Journal of Solids & Structures,2001,38(22-23):4147-4172. doi: 10.1016/S0020-7683(00)00268-7
    [25] HUANG Z M. Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model[J]. Composites Part A: Applied Science and Manufacturing,2001,32(2):143-172. doi: 10.1016/S1359-835X(00)00142-1
    [26] HUANG Z M, ZHOU Y X. Strength of fibrous composites-Advanced topics in science & technology in China[M]. Hangzhou & Heidelberg: Zhejiang University Press & Springer, 2011.
    [27] 黄争鸣. 复合材料破坏与强度[M]. 北京: 科学出版社, 2018.

    HUANG Z M. Failures and strengths of composite materials[M]. Beijing: Science Press, 2018(in Chinese).
    [28] HUANG Z M, ZHANG C C, XUE Y D. Stiffness prediction of short fiber reinforced composites[J]. International Journal of Mechanical Sciences,2019,161-162:105068. doi: 10.1016/j.ijmecsci.2019.105068
    [29] HUANG H B, HUANG Z M. Micromechanical prediction of elastic-plastic behavior of a short fiber or particle reinforced composite[J]. Composites Part A: Applied Science and Manufacturing,2020,134:105889. doi: 10.1016/j.compositesa.2020.105889
    [30] RYAN S, WICKLEIN M, MOURITZ A, et al. Theoretical prediction of dynamic composite material properties for hypervelocity impact simulations[J]. International Journal of Impact Engineering,2009,36:899-912. doi: 10.1016/j.ijimpeng.2008.12.012
    [31] SHAW A, SRIRAMULA S, GOSLING P D, et al. A critical reliability evaluation of fibre reinforced composite materials based on probabilistic micro and macro-mechanical analysis[J]. Composites Part B: Engineering,2010,41:446-453. doi: 10.1016/j.compositesb.2010.05.005
    [32] YOUNES R, HALLAL A, FARDOUN F, et al. Comparative review study on elastic properties modeling for unidirectional composite materials[M]//Composites and Their Properties. Chapter 17, 2012: 391-408.
    [33] GHASEMI A R, MOHAMMADI M M, MOHANDES M. The role of carbon nanofibers on thermo mechanical properties of polymer matrix composites and their effect on reduction of residual stresses[J]. Composites Part B: Engi-neering,2015,77:519-527. doi: 10.1016/j.compositesb.2015.03.065
    [34] VIGNOLI L L, SAVI M A, PACHECO P M C L, et al. Comparative analysis of micromechanical models for the elastic composite laminae[J]. Composites Part B: Engineering,2019,174:106961. doi: 10.1016/j.compositesb.2019.106961
    [35] HUANG Z M. On micromechanics approach to stiffness and strength of unidirectional composites[J]. Journal of Reinforced Plastics and Composites,2019,38(4):167-196.
    [36] GUEDES R M. Validation of trace-based approach to elastic properties of multidirectional glass fibre reinforced composites[J]. Composite Structures,2021,257:113170. doi: 10.1016/j.compstruct.2020.113170
    [37] HUANG Z M, LIU L. Predicting strength of fibrous laminates under triaxial loads only upon independently measured constituent properties[J]. International Journal of Mechanical Sciences,2014,79:105-129. doi: 10.1016/j.ijmecsci.2013.08.010
    [38] HUANG Z M, XIN L M. In situ strengths of matrix in a composite[J]. Acta Mechanica Sinica,2017,33(1):120-131. doi: 10.1007/s10409-016-0611-1
    [39] LIU L, HUANG Z M. Stress concentration factor in matrix of a composite reinforced with transversely isotropic fibers[J]. Journal of Composite Materials,2014,48(1):81-98. doi: 10.1177/0021998312469237
    [40] HUANG Z M, LIU L. Assessment of composite failure and ultimate strength without experiment on composite[J]. Acta Mechanica Sinica,2014,30(4):569-588. doi: 10.1007/s10409-014-0040-y
    [41] HUANG Z M, XIN L M. Stress concentration factor in matrix of a composite subjected to transverse compression[J]. International Journal of Applied Mechanics,2016,8(3):1650034. doi: 10.1142/S1758825116500344
    [42] ZHOU Y, HUANG Z M, LIU L. Prediction of interfacial debonding in fiber-reinforced composite laminates[J]. Polymer Composites,2019,40(5):1828-1841. doi: 10.1002/pc.24943
    [43] HUANG Z M. Micromechanical failure analysis of unidirectional composites[C]//Failure Analysis, IntechOpen, 2019.
    [44] HUANG Z M, GUO W J, HUANG H B, et al. Tensile strength prediction of short fiber reinforced composites[J]. Materials,2021,14(11):2708. doi: 10.3390/ma14112708
    [45] 郭威静, 黄争鸣. 短纤维复合材料的压缩强度[J]. 固体力学学报, 2022, 43(1):1-15.

    GUO W J, HUANG Z M. Compressive strength of a shrt fiber composite[J]. Chinese Journal of Solid Mechanics,2022,43(1):1-15(in Chinese).
    [46] ZHOU Y, HUANG Z M. Prediction of in-plane shear pro-perties of a composite with debonded interface[J]. Applied Composite Materials, 2022, 29: 901-935.
    [47] YU M H. Advances in strength theories for materials under complex stress state in the 20th century[J]. Advances in Mechanics,2002,55(3):169-218. doi: 10.1115/1.1472455
    [48] ORIFICI A C, HERSZBERG I, THOMSON R S. Review of methodologies for composite material modelling incorporating failure[J]. Composite Structures,2008,86(1-3):194-210. doi: 10.1016/j.compstruct.2008.03.007
    [49] TALREJA R. Assessment of the fundamentals of failure theories for composite materials[J]. Composites Science & Technology,2014,105:190-201. doi: 10.1016/j.compscitech.2014.10.014
    [50] HUANG Z M, WANG L S, JIANG F, et al. Detection on matrix induced composite failures[J]. Composites Science & Technology,2021,205:108670. doi: 10.1016/j.compscitech.2021.108670
    [51] WANG L S, HUANG Z M. On strength prediction of laminated composites[J]. Composites Science & Technology,2022,219:109206. doi: 10.1016/j.compscitech.2021.109206
    [52] BAK B L V, SARRADO C, TURON A, et al. Delamination under fatigue loads in composite laminates: A review on the observed phenomenology and computational methods[J]. Applied Mechanics Reviews,2014,66:060803. doi: 10.1115/1.4027647
    [53] TABIEI A, ZHANG W. Composite laminate delamination simulation and experiment: A review of recent development[J]. Applied Mechanics Reviews,2018,70:030801. doi: 10.1115/1.4040448
    [54] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics,1962,7(1):55-129.
    [55] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids,1960,8(2):100-104. doi: 10.1016/0022-5096(60)90013-2
    [56] RYBICKI E F, KANNINEN M F. A finite element calculation of stress intensity factors by a modified crack closure integral[J]. Engineering Fracture Mechanics,1977,9(4):931-938. doi: 10.1016/0013-7944(77)90013-3
    [57] KRUEGER R. Virtual crack closure technique: history, approach, and applications[J]. Applied Mechanics Reviews,2004,57(2):109-143. doi: 10.1115/1.1595677
    [58] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering,1999,45(5):601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [59] MOTAMEDI D, MILANI A S. 3D nonlinear XFEM simulation of delamination in unidirectional composite laminates: A sensitivity analysis of modeling parameters[J]. Open Journal of Composite Materials ,2013,3(4):113-126.
    [60] HUANG Z M, LI P. Prediction of laminate delamination with no iteration[J]. Engineering Fracture Mechanics,2020,238:107248. doi: 10.1016/j.engfracmech.2020.107248
    [61] ZHOU J C, HUANG Z M, XU W. Prediction of laminate delamination from strength failure of interlaminar matrix-layer[J/OL]. Journal of Reinforced Plastics and Compo-sites, 2022-05-01[2022-07-21].
    [62] ZHOU J C, HUANG Z M. Predicting delamination of hybrid laminate via stress modification on interlaminar matrix layer[J]. Engineering Fracture Mechanics,2022,264:108333. doi: 10.1016/j.engfracmech.2022.108333
    [63] ABAQUS. Theory manual[M]. Version 5.5. Hibbitt, Karlsson & Sorensen, Inc., 1995.
    [64] TRELOAR L R G. The physics of rubber elasticity[M]. 3rd ed. Oxford: larendon Press, 1975.
    [65] OGDEN R W. Non-linear elastic deformations[M]. New York: Wiley, 1984.
    [66] HUANG Z M. A unified micromechanical model for the mechanical properties of two constituent composite materials, Part IV: Rubber-elastic behavior[J]. Journal of Thermoplastic Composite Materials,2000,13(2):119-139. doi: 10.1177/089270570001300203
    [67] HUANG Z M, RAMAKRISHNA S, TAY A A O. Modelling of stress-strain behavior of a knitted fabric reinforced elastomer composite[J]. Composites Science & Technology,2000,60(5):671-691. doi: 10.1016/S0266-3538(99)00164-5
    [68] SEGURADO J, LLORCA J. A numerical approximation to the elastic properties of sphere-reinforced composites[J]. Journal of the Mechanics & Physics of Solids,2002,50:2107-2121. doi: 10.1016/S0022-5096(02)00021-2
    [69] JIANG Z, LIU X, LI G, et al. A new analytical model for three-dimensional elastic stress field distribution in short fibre composite[J]. Materials Science and Engineering: A,2004,366(2):381-396. doi: 10.1016/j.msea.2003.09.055
    [70] GADALA R W. Numerical solutions of nonlinear problems of continua—II. Survey of incompressibility constraints and software aspects[J]. Computers & Structures,1986,22:841-855. doi: 10.1016/0045-7949(86)90273-7
    [71] SUSSMAN T, BATHE K J. A finite element formulation for nonlinear incompressible elastic and inelastic analysis[J]. Computers & Structures,1987,26:357-409. doi: 10.1016/0045-7949(87)90265-3
    [72] PENG S H, CHANG W J. A compressible approach in finite element analysis of rubber-elastic materials[J]. Computers & Structures,1997,62:573-593. doi: 10.1016/S0045-7949(96)00195-2
    [73] TRELOAR L R G. Stress-strain data for vulcanised rubber under various types of deformation[J]. Transactions of the Faraday Society,1944,40:59-70. doi: 10.1039/tf9444000059
    [74] SODEN P D, HINTON M J, KADDOUR A S. Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates[J]. Composites Science and Technology,1998,58(7):1011-1022. doi: 10.1016/S0266-3538(98)00078-5
    [75] ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion and related Problems[J]. Proceedings of the Royal Society of London A,1957,A240:367-396.
    [76] CHEN T, DVORAK G J, BENVENISTE Y. Stress fields in composites reinforced by coated cylindrically orthotropic fibers[J]. Mechmater Mechanics of Materials,1990,9:17-32. doi: 10.1016/0167-6636(90)90027-D
    [77] ZHOU Y, HUANG Z M. Shear deformation of a composite until failure with a debonded interface[J]. Composite Structures,2020,254:112797. doi: 10.1016/j.compstruct.2020.112797
    [78] HUANG Z M, RAMAKRISHNA S. Micromechanical modelling approaches for the stiffness and strength of knitted fabric composites: A review & comparative study[J]. Composites Part A: Applied Science & Manufacturing,2000,31(5):479-501. doi: 10.1016/S1359-835X(99)00083-4
    [79] HUANG Z M. Modeling and characterization of bending strength of braided fabric reinforced laminates[J]. Jour-nal of Composite Materials,2002,36(22):2537-2566. doi: 10.1177/002199802761405286
    [80] HUANG Z M. Progressive flexural failure analysis of laminated composites with knitted fabric reinforcement[J]. Mechanics of Materials,2004,36(3):239-260. doi: 10.1016/S0167-6636(03)00011-5
    [81] HOBBIEBRUNKEN T, HOJO M, ADACHI T, et al. Evaluation of interfacial strength in CF/epoxies using FEM and in-situ experiments[J]. Composites Part A: Applied Science & Manufacturing,2006,37(12):2248-2256. doi: 10.1016/j.compositesa.2005.12.021
    [82] MORTELL D J, TANNER D A, MCCARTHY C T. In-situ SEM study of transverse cracking and delamination in laminated composite materials[J]. Composites Science & Technology,2014,105:118-126. doi: 10.1016/j.compscitech.2014.10.012
    [83] KOYANAGI J, OGIHARA S, NAKATANI H, et al. Mechanical properties of fiber/matrix interface in polymer matrix composites[J]. Advanced Composite Materials,2014,23(5-6):551-570. doi: 10.1080/09243046.2014.915125
    [84] PUPPO H, EVENSEN H A. Interlaminar shear in laminated composites under generalized plane stress[J]. Jour-nal of Composite Materials,1970,4:204-220. doi: 10.1177/002199837000400206
    [85] PETROSSIAN Z, WISNOM M R. Prediction of delamination initiation and growth from discontinuous plies using interface elements[J]. Composites Part A: Applied Science & Manufacturing,1998,29:503-515. doi: 10.1016/S1359-835X(97)00134-6
    [86] CHERNIAEV A, TELICHEV I. Meso-scale modeling of hypervelocity impact damage in composite laminates[J]. Composites Part B: Engineering,2015,74:95-103. doi: 10.1016/j.compositesb.2015.01.010
    [87] FLETCHER T A, KIM T, DODWELL T J, et al. Resin treatment of free edges to aid certification of through thickness laminate strength[J]. Composite Structures,2016,146:26-33. doi: 10.1016/j.compstruct.2016.02.074
    [88] SAITO H, TAKEUCHI H, KIMPARA I. Experimental evaluation of the damage growth restraining in 90 layer of thin-ply CFRP cross-ply laminates[J]. Advanced Composite Materials,2012,21(1):57-66. doi: 10.1163/156855112X629522
    [89] PINHO S T, DARVIZEH R, ROBINSON P, et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials,2012,46(19-20):2313-2341. doi: 10.1177/0021998312454478
    [90] ZHOU Y X, HUANG Z M. A bridging model prediction of the ultimate strength of composite laminates subjected to triaxial loads[J]. Journal of Composite Materials,2012,46(19-20):2343-2378. doi: 10.1177/0021998312449491
    [91] SUN Q, GUO H, ZHOU G, et al. Experimental and computational analysis of failure mechanisms in unidirectional carbon fiber reinforced polymer laminates under longitudinal compression loading[J]. Composite Structures,2018,203:335-348. doi: 10.1016/j.compstruct.2018.06.028
    [92] ZHOU Y, HUANG Z M. Failure of fiber-reinforced composite laminates under longitudinal compression[J]. Journal of Composite Materials,2019,53(24):3395-3411. doi: 10.1177/0021998319839217
    [93] ZHOU Y, HUANG Z M, WANG J X. Splitting failure of a composite under longitudinal tension[J]. Polymer Composites, 2023, 44: 1116-1134.
    [94] YURGARTIS S. Measurement of small angle fiber misalignments in continuous fiber composites[J]. Compo-sites Science & Technology,1987,30(4):279-293. doi: 10.1016/0266-3538(87)90016-9
    [95] HUANG Z M. Constitutive relation, deformation, failure and strength of composites reinforced with continuous/short fibers or particles[J]. Composite Structures,2021,262:113279. doi: 10.1016/j.compstruct.2020.113279
    [96] PUCK A, SHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science & Technology,1998,58(7):1045-1067. doi: 10.1016/S0266-3538(96)00140-6
    [97] PINHO S T, DAVILA C G, CAMNAHO P P, et al. Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity[R]. NASA/TM-2005-213530, 2005.
    [98] PUCK A, SCHÜRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science & Technology,2002,62(12-13):1633-1662. doi: 10.1016/S0266-3538(01)00208-1
    [99] PINHO S T, IANNUCCI L, ROBINSON P. Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development[J]. Composites Part A: Applied Science & Manufacturing,2006,37(1):63-73. doi: 10.1016/j.compositesa.2005.04.016
    [100] GARNICH M R, AKULA V M K. Review of degradation models for progressive failure analysis of fiber reinforced polymer composites[J]. Applied Mechanics Reviews,2009,62(1):010801. doi: 10.1115/1.3013822
    [101] GU J J, HUANG Z M. Assessing delamination initiation of angle-ply laminates from fiber and matrix properties[J]. Journal of Thermoplastic Composite Materials,2019,32(12):1601-1621. doi: 10.1177/0892705718799840
    [102] MA Q, HUANG Z M. Failure analysis of laminated structure containing hole through FE approach[J]. Composite Structures, 2023, 306: 116558.
    [103] HUANG Z M. Micromechanical life prediction for composite laminates[J]. Mechanics of Materials,2001,33(4):185-199. doi: 10.1016/S0167-6636(00)00056-9
    [104] HUANG Z M. Micromechanical modeling of fatigue strength of unidirectional fibrous composites[J]. International Journal of Fatigue,2002,24(6):659-670. doi: 10.1016/S0142-1123(01)00185-2
    [105] HUANG Z M. Cyclic response of metal matrix composite laminates subjected to thermo- mechanical fatigue loads[J]. International Journal of Fatigue,2002,24(2-4):463-475. doi: 10.1016/S0142-1123(01)00102-5
    [106] HUANG Z M. Fatigue life prediction of a woven fabric composite subjected to biaxial cyclic loads[J]. Compo-sites Part A: Applied Science and Manufacturing,2002,33(2):253-266. doi: 10.1016/S1359-835X(01)00091-4
    [107] HUANG Z M, RAMAKRISHNA S, THWE A A. Modeling and characterization of fatigue strength of laminated composites with knitted fabric reinforcement[J]. Journal of Composite Materials,2002,36(15):1781-1801. doi: 10.1177/0021998302036015168
    [108] REKTORYS K. Variational methods in mathematics, science, and engineering[M]. Amsterdam: Springer, 1977.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  1745
  • HTML全文浏览量:  578
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 修回日期:  2022-11-21
  • 录用日期:  2022-12-05
  • 网络出版日期:  2023-01-18
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回