留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隧道内壁耐久型CQDs@TiO2自洁净光催化涂层的制备与性能

夏慧芸 燕敏杰 吕昕 张文硕 宋莉芳 张景怡 牛艳辉

夏慧芸, 燕敏杰, 吕昕, 等. 隧道内壁耐久型CQDs@TiO2自洁净光催化涂层的制备与性能[J]. 复合材料学报, 2023, 40(10): 5782-5791. doi: 10.13801/j.cnki.fhclxb.20230117.004
引用本文: 夏慧芸, 燕敏杰, 吕昕, 等. 隧道内壁耐久型CQDs@TiO2自洁净光催化涂层的制备与性能[J]. 复合材料学报, 2023, 40(10): 5782-5791. doi: 10.13801/j.cnki.fhclxb.20230117.004
XIA Huiyun, YAN Minjie, LV Xin, et al. Preparation and properties of CQDs@TiO2 based durable self-cleaning photocatalytic coating for tunnel wall[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5782-5791. doi: 10.13801/j.cnki.fhclxb.20230117.004
Citation: XIA Huiyun, YAN Minjie, LV Xin, et al. Preparation and properties of CQDs@TiO2 based durable self-cleaning photocatalytic coating for tunnel wall[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5782-5791. doi: 10.13801/j.cnki.fhclxb.20230117.004

隧道内壁耐久型CQDs@TiO2自洁净光催化涂层的制备与性能

doi: 10.13801/j.cnki.fhclxb.20230117.004
基金项目: 国家自然科学基金面上项目(52278427);长安大学中央高校基本科研业务费专项资金(300102310301;300102311404);浙江省交通厅科技项目(2021012)
详细信息
    通讯作者:

    夏慧芸,博士,副教授,硕士生导师,主要从事交通功能材料研究 E-mail: xiahy@chd.edu.cn

  • 中图分类号: TB34;O644.1;X511;TB33

Preparation and properties of CQDs@TiO2 based durable self-cleaning photocatalytic coating for tunnel wall

Funds: National Natural Science Foundation of China (52278427); Basic Research Fund for Central Universities of Chang'an University (300102310301; 300102311404); Science and Technology Project of Transportation Department of Zhejiang Province (2021012)
  • 摘要: 隧道因其半封闭结构通风不良导致汽车尾气在隧道中大量聚集,从而造成严重的空气污染。本文首先通过一步法将碳量子点(CQDs)负载于一维TiO2纳米管(TNs)表面得到一种具有可见光响应、可高效降解NO的CQDs@TNs复合光催化剂;其次采用喷涂法以环氧树脂为成膜基质,通过引入低表面能组分,以上述光催化剂作为光活性组分,制备得到一种超疏水自清洁光催化涂层。采用SEM、XRD、XPS、Brunauer-Emmett-Teller计算(BET)、PL和UV-Vis对复合光催化剂的微观结构和化学组成、光学性能进行表征,并研究了其对NO的光催化降解性能;通过SEM、EDS、表面除灰测试、紫外老化测试、耐水冲测试、砂纸打磨测试对涂层的微观形貌、自清洁性及耐久性进行了系统研究,并探究了其对NO的光降解性能和循环降解性能。结果表明:该涂层具有良好的自清洁性、耐久性,对NO降解率可达42.9%,且具有一定的循环稳定性,可以长期适用于隧道等环境下对NO的降解处理。

     

  • 图  1  涂层制备及光催化降解测试过程示意图

    Figure  1.  Schematic diagram of coating preparation and photocatalytic degradation test process

    TEOS—Tetraacetoxysilane; PFDTES—1H,1H,2H,2H-Perfluorodecyltriethoxysilane; PCD—Photocatalytic degradation

    图  2  TNs、1-1CQDs@TNs、1-2CQDs@TNs、1-4CQDs@TNs的XRD图谱

    Figure  2.  XRD patterns of TNs, 1-1CQDs@TNs, 1-2CQDs@TNs and 1-4CQDs@TNs

    图  3  TNs和1-2CQDs@TNs的XPS图谱:(a) C1s;(b) O1s;(c) Ti2p

    Figure  3.  XPS spectra of TNs and 1-2CQDs@TNs: (a) C1s; (b) O1s; (c) Ti2p

    图  4  TNs (a)与1-2CQDs@TNs ((b)~(d))的SEM图像

    Figure  4.  SEM images of TNs (a) and 1-2CQDs@TNs ((b)-(d))

    图  5  TNs、1-1CQDs@TNs、1-2CQDs@TNs、1-4CQDs@TNs的PL光谱 (a)、UV-Vis光谱 (b) 及对应的Tauc plot图 (c)

    Figure  5.  PL spectra (a), UV-Vis spectra (b) and the corresponding plot of Tauc plot pattern (c) of TNs, 1-1CQDs@TNs, 1-2CQDs@TNs and 1-4CQDs@TNs

    α—Absorption coefficient; —Photon energy; Eg—Band gap

    图  6  1-1CQDs@TNs、1-2CQDs@TNs、1-4CQDs@TNs在紫外光(a)和可见光(b)下对NO的光降解效率

    Figure  6.  Photodegradation efficiency of 1-1CQDs@TNs, 1-2CQDs@TNs, 1-4CQDs@TNs for NO under UV light (a) and visible light (b)

    图  7  FCTE涂层的SEM图像 ((a)、(b)) 与EDS图像 ((c)~(g))

    Figure  7.  SEM images ((a), (b)) and EDS images ((c)-(g)) of FCTE coating

    图  8  1-2FCTE涂层:(a) 表面除灰测试;(b) 耐水冲测试;(c) 砂纸打磨测试;(d) 热重分析

    Figure  8.  1-2FCTE coatings: (a) Ash adhesion resistance test; (b) Water flushing test; (c) Sandpaper abrasion test; (d) Thermogravimetric analysis

    图  9  自清洁光催化FCTE涂层在紫外光下 (a)、可见光下 (b) 和可见光下循环5次 (c) 对NO的光降解效率

    Figure  9.  Photodegradation efficiency of the self-cleaning photocatalytic FCTE coating for NO under UV light (a), visible light (b), and visible light for five cycles (c)

    表  1  碳量子点(CQDs)@一维TiO2纳米管(TNs)复合光催化剂及其对应涂层的命名

    Table  1.   Naming of carbon quantum dots (CQDs)@unidimensional TiO2 nanotubes (TNs) composite photocatalyst and corresponding coating

    Composite
    photocatalyst
    Mass ratio
    CQDs:TNs
    Coating
    1-1CQDs@TNs 1∶1 1-1FCTE
    1-2CQDs@TNs 1∶2 1-2FCTE
    1-4CQDs@TNs 1∶4 1-4FCTE
    Note: FCTE—Fluorosilane/CQDs@TNs/epoxy resin.
    下载: 导出CSV

    表  2  TNs、1-1CQDs@TNs、1-2CQDs@TNs、1-4CQDs@TNs的BET测试结果

    Table  2.   BET test results of TNs, 1-1CQDs@TNs, 1-2CQDs@TNs and 1-4CQDs@TNs

    Sample typeSpecific surface area/(m2·g−1)
    TNs199.53
    1-1CQDs@TNs202.75
    1-2CQDs@TNs237.06
    1-4CQDs@TNs209.67
    下载: 导出CSV

    表  3  1-xFCTE涂层对水、橄榄油及丙三醇的接触角(CA)

    Table  3.   Contact angles (CA) of 1-xFCTE coating on water, olive oil and glycerol

    Coating
    type
    1-1FCTE
    coating/(°)
    1-2FCTE
    coating/(°)
    1-4FCTE
    coating/(°)
    Water158.1160.4150.2
    Olive oil129.3130.2125.8
    Glycerol149.5151.5144.4
    下载: 导出CSV

    表  4  紫外老化前后1-2FCTE涂层对水、乙二醇及丙三醇的CA

    Table  4.   CA of 1-2FCTE coatings to water, ethylene glycol and glycerol before and after UV aging

    Solvent typeWater/(°)Ethylene glycol/(°)Glycerol/(°)
    CA before UV aging160.4146.1151.5
    CA after UV aging for 2 d158.0140.5143.0
    CA after UV aging for 5 d154.3137.9139.5
    下载: 导出CSV
  • [1] YANG F, GAO Y W, ZHONG K, et al. Impacts of cross-ventilation on the air quality in street canyons with different building arrangements[J]. Building and Environment,2016,104:1-12. doi: 10.1016/j.buildenv.2016.04.013
    [2] KEYTE I J, ALBINET A, HARRISON R M. On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy- and nitro-derivative compounds measured in road tunnel environments[J]. Science of the Total Environment,2016,566:1131-1142.
    [3] ZHAO Y B, GAO P P, YANG W D, et al. Vehicle exhaust: An overstated cause of haze in China[J]. Science of the Total Environment,2018,612:490-491. doi: 10.1016/j.scitotenv.2017.08.255
    [4] SHAHADIN M S, MUTALIB N S A, LATIF M T, et al. Challenges and future direction of molecular research in air pollution-related lung cancers[J]. Lung Cancer,2018,118:69-75. doi: 10.1016/j.lungcan.2018.01.016
    [5] LIU G Y, XIA H Y, NIU Y H, et al. Photocatalytic performance of doped TiO2/AC coating and its UV stability research[J]. Progress in Organic Coatings,2020,148:105882. doi: 10.1016/j.porgcoat.2020.105882
    [6] SALVADORES F, ALFANO O M, BALLARI M M. Kinetic study of air treatment by photocatalytic paints under indoor radiation source: Influence of ambient conditions and photocatalyst content[J]. Applied Catalysis B: Environmental,2020,268:118694. doi: 10.1016/j.apcatb.2020.118694
    [7] MAO H, JIN Z N, ZHANG F F, et al. A high efficiency photocatalyst based on porous Bi-doped TiO2 composites[J]. Ceramics International,2018,44(14):17535-17538. doi: 10.1016/j.ceramint.2018.06.074
    [8] LIU X H, YANG Y, LI H P, et al. Visible light degradation of tetracycline using oxygen-rich titanium dioxide nanosheets decorated by carbon quantum dots[J]. Chemical Engineering Journal,2021,408:127259. doi: 10.1016/j.cej.2020.127259
    [9] XU L, BAI X, GUO L K, et al. Facial fabrication of carbon quantum dots (CDs)-modified N-TiO2−x nanocomposite for the efficient photoreduction of Cr(VI) under visible light[J]. Chemical Engineering Journal,2019,357:473-486. doi: 10.1016/j.cej.2018.09.172
    [10] XIA H Y, LIU G Y, ZHANG R, et al. The photocatalytic degradation of vehicle exhausts by an Fe/N/co-TiO2 waterborne coating under visible light[J]. Materials,2019,12(20):3378. doi: 10.3390/ma12203378
    [11] LIU G Y, XIA H Y, ZHANG W S, et al. Improvement mechanism of NO photocatalytic degradation performance of self-cleaning synergistic photocatalytic coating under high humidity[J]. Journal of Hazardous Materials,2021,418:126337. doi: 10.1016/j.jhazmat.2021.126337
    [12] GOPALAN A I, LEE J C, SAIANAND G, et al. Recent progress in the abatement of hazardous pollutants using photocatalytic TiO2-based building materials[J]. Nanomaterials,2020,10(9):1854. doi: 10.3390/nano10091854
    [13] 夏慧芸, 赵旭, 刘冠宇, 等. 自清洁阻燃型可见光催化降解汽车尾气涂层的制备与性能研究[J]. 硅酸盐通报, 2019, 38(3):589-595.

    XIA Huiyun, ZHAO Xu, LIU Guanyu, et al. Preparation and properties of self-cleaning flame retardant coatings for automobile exhaust degradation by visible light photocatalysis[J]. Bulletin of the Chinese Ceramic Society,2019,38(3):589-595(in Chinese).
    [14] LIU G Y, XIA H Y, YAN M J, et al. Performance and mechanism of self-cleaning synergistic photocatalytic coating inhibiting NO2 for green degradation of NO[J]. Applied Surface Science,2022,586:152787. doi: 10.1016/j.apsusc.2022.152787
    [15] LAI Y K, HUANG J Y, CUI Z Q, et al. Recent advances in TiO2-based nanostructured surfaces with controllable wettability and adhesion[J]. Small,2016,12(16):2203-2224. doi: 10.1002/smll.201501837
    [16] NUNDY S, GHOSH A, MALLICK T K. Hydrophilic and superhydrophilic self-cleaning coatings by morphologically varying ZnO microstructures for photovoltaic and glazing applications[J]. ACS Omega,2020,5(2):1033-1039. doi: 10.1021/acsomega.9b02758
    [17] LIU G Y, XIA H Y, NIU Y H, et al. Fabrication of self-cleaning photocatalytic durable building coating based on WO3-TNs/PDMS and NO degradation performance[J]. Chemical Engineering Journal,2021,409:128187. doi: 10.1016/j.cej.2020.128187
    [18] ONG W J, TAN L L, CHAI S P, et al. Highly reactive {001} facets of TiO2-based composites: Synthesis, formation mechanism and characterization[J]. Nanoscale,2014,6(4):1946-2008. doi: 10.1039/c3nr04655a
    [19] YANG H, YOON J. A short note on the error estimates of Yuan-Shu discontinuous Galerkin method based on non-polynomial approximation spaces[J]. Journal of Computational Physics,2016,320:33-39. doi: 10.1016/j.jcp.2016.05.032
    [20] LI Y W, WANG J, SUN L L, et al. LncRNA myocardial infarction-associated transcript (MIAT) contributed to cardiac hypertrophy by regulating TLR4 via miR-93[J]. European Journal of Pharmacology,2018,818:508-517. doi: 10.1016/j.ejphar.2017.11.031
    [21] QIN J, ZHAO R, XIA M. A facile approach to synthesis carbon quantum dots-doped P25 visible-light driven photocatalyst with improved NO removal performance[J]. Atmospheric Pollution Research,2020,11(2):303-309. doi: 10.1016/j.apr.2019.11.003
    [22] PAN J, SHENG Y, ZHANG J, et al. Preparation of carbon quantum dots/TiO2 nanotubes composites and their visible light catalytic applications[J]. Journal of Materials Chemistry A,2014,2(42):18082-18086. doi: 10.1039/C4TA03528C
    [23] YU H, ZHAO Y, ZHOU C, et al. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A,2014,2(10):3344-3351. doi: 10.1039/c3ta14108j
    [24] QIU B C, ZHOU Y, MA Y F, et al. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis[J]. Scientific Reports,2015,5:8591. doi: 10.1038/srep08591
    [25] FANG W Z, ZHOU Y, DONG C C, et al. Enhanced photocatalytic activities of vacuum activated TiO2 catalysts with Ti3+ and N co-doped[J]. Catalysis Today,2016,266:188-196. doi: 10.1016/j.cattod.2015.07.027
    [26] TAN H Q, ZHAO Z, NIU M, et al. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity[J]. Nanoscale,2014,6(17):10216-10223. doi: 10.1039/C4NR02677B
    [27] LI X, YU J, JARONIEC M. Hierarchical photocatalysts[J]. Chemical Society Reviews,2016,45(9):2603-2636. doi: 10.1039/C5CS00838G
    [28] DI J, XIA J X, HUANG Y, et al. Constructing carbon quantum dots/Bi2SiO5 ultrathin nanosheets with enhanced photocatalytic activity and mechanism investigation[J]. Chemical Engineering Journal,2016,302:334-343. doi: 10.1016/j.cej.2016.05.009
    [29] ENEA D, BELLARDITA M, SCALISI P, et al. Effects of weathering on the performance of self-cleaning photocatalytic paints[J]. Cement and Concrete Composites,2019,96:77-86.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  130
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 修回日期:  2022-12-31
  • 录用日期:  2023-01-08
  • 网络出版日期:  2023-01-18
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回