留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe2O3/氮掺杂生物质碳复合材料制备及其在超级电容器中的应用

魏帅 李朝霞 孟淑娟 朱星臣 卢新宇 苏琼 王彦斌

魏帅, 李朝霞, 孟淑娟, 等. Fe2O3/氮掺杂生物质碳复合材料制备及其在超级电容器中的应用[J]. 复合材料学报, 2023, 40(10): 5736-5749. doi: 10.13801/j.cnki.fhclxb.20230117.001
引用本文: 魏帅, 李朝霞, 孟淑娟, 等. Fe2O3/氮掺杂生物质碳复合材料制备及其在超级电容器中的应用[J]. 复合材料学报, 2023, 40(10): 5736-5749. doi: 10.13801/j.cnki.fhclxb.20230117.001
WEI Shuai, LI Zhaoxia, MENG Shujuan, et al. Preparation of Fe2O3/nitrogen-doped biomass carbon composites and their application in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5736-5749. doi: 10.13801/j.cnki.fhclxb.20230117.001
Citation: WEI Shuai, LI Zhaoxia, MENG Shujuan, et al. Preparation of Fe2O3/nitrogen-doped biomass carbon composites and their application in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5736-5749. doi: 10.13801/j.cnki.fhclxb.20230117.001

Fe2O3/氮掺杂生物质碳复合材料制备及其在超级电容器中的应用

doi: 10.13801/j.cnki.fhclxb.20230117.001
基金项目: 国家自然科学基金(21968032;22165025);省科技计划项目(20YF8FA045);中央高校基本科研业务费项目(31920220044);化学学科创新团队建设项目(1110130139;1110130141);省级一流专业建设(2019SJYLZY-08);省级高校创新创业项目(2021SJCXCYXM-01;2021SJCXCYTD-01);优秀研究生“创新之星”项目(2022CXZX-200)
详细信息
    通讯作者:

    苏琼,硕士,教授,硕士生导师,研究方向为功能复合材料的研究 E-mail: hgsq@xbmu.edu.cn

    王彦斌,博士,教授,硕士生导师,研究方向为生物质复合材料的研究 E-mail: ybwang@126.com

  • 中图分类号: TB333

Preparation of Fe2O3/nitrogen-doped biomass carbon composites and their application in supercapacitors

Funds: National Natural Science Foundation of China (21968032; 22165025); Provincial Science and Technology Project (20YF8FA045); Basic Research Funds for Central Universities (31920220044); Chemistry Innovation Team Building Project (1110130139; 1110130141); Provincial First-class Professional Construction (2019SJYLZY-08); Provincial College Innovation and Entrepreneurship Project (2021SJCXCYXM-01; 2021SJCXCYTD-01); Outstanding Graduate Student "Innovation Star" Project (2022CXZX-200)
  • 摘要: 开发具有离子/电子传输速度快,表面化学可调的可再生、低成本、环保的电极材料是目前储能器件发展的迫切需要。近年来,生物质碳材料因其低成本、可再生、循环性能好等优点备受关注,但其比电容和能量密度较低影响了其实际应用。在此,将生物质废弃物转化为具有良好化学性质的碳材料,并通过杂原子掺杂生物质碳材料与过渡金属氧化物Fe2O3进行复合,利用Fe2O3与氮掺杂碳的互补优势,以一步碳化法制备出Fe2O3/氮掺杂生物质碳(NBCs)复合材料,表现出优异的电化学性能。结果表明:Fe2O3/NBCs作为负极材料在1 A·g−1电流密度下的比电容为575 F·g−1。同时,将Fe2O3/NBCs-700℃和NiCoFe-P分别为负极和正极材料组装成不对称超级电容器,在功率密度为800 W·kg−1的情况下,能量密度达到33.3 W·h·kg−1。组装的不对称超级电容器还表现出优异循环稳定性,经过3500次循环后仍保持82.4%的电容。因此,Fe2O3/NBCs作为负极电极材料,是极具有前途的超级电容器电极材料。

     

  • 图  1  Fe2O3/氮掺杂生物质碳(NBCs)制备示意图

    Figure  1.  Schematic diagram of the preparation of Fe2O3/nitrogen-doped biomass carbon (NBCs)

    PVP-K30—Polyvinylpyrrolidone-K30

    图  2  ((a)~(c)) Fe2O3/NBCs-700℃不同倍数下的SEM图像;(d) Fe2O3/NBCs-700℃的EDS元素映射图;((e)~(g)) Fe2O3/NBCs-700℃不同倍数下的TEM图像

    Figure  2.  ((a)-(c)) SEM images of Fe2O3/NBCs-700℃ under different multiples; (d) EDS element map of Fe2O3/NBCs-700℃; ((e)-(g)) TEM images of Fe2O3/NBCs-700℃ at different multiples

    图  3  (a) 所有样品的XRD图谱;(b) Fe2O3/NBCs-700℃的Raman图谱;(c) Fe2O3/NBCs-700℃的氮气吸附解析曲线;(d) Fe2O3/NBCs-700℃的孔径分布曲线

    Figure  3.  (a) XRD patterns of all samples; (b) Raman spectrum of Fe2O3/NBCs-700℃; (c) Nitrogen adsorption analytical curve of Fe2O3/NBCs-700℃; (d) Pore size distribution curve of Fe2O3/NBCs-700℃

    Ns—Biomass grass is not added

    图  4  (a) Fe2O3/NBCs-700℃的XPS全谱图;(b) Fe2p;(c) C1s;(d) N1s

    Figure  4.  (a) Full range XPS spectrum of Fe2O3/NBCs-700℃; (b) Fe2p; (c) C1s; (d) N1s

    Sat.—Satellite peak; N-5—Pyrrole nitrogen; N-6—Pyridine nitrogen; N-Q—Graphitized nitrogen; N-X—Pyridine nitrogen oxide

    图  5  (a) 复合材料在三电极体系中10 mV·s−1扫描速率下的CV曲线;(b) Fe2O3/NBCs-700℃在不同扫描速率下的CV曲线;(c) 复合材料在1 A·g−1电流密度下的GCD曲线;(d) Fe2O3/NBCs-700℃在不同电流密度下的GCD曲线

    Figure  5.  (a) CV curves of composite material at 10 mV·s−1 scanning rate in three electrode system; (b) CV curves of Fe2O3/NBCs-700℃ under different scanning rates; (c) GCD curves of composite materials at 1 A·g−1 current density; (d) GCD curves of Fe2O3/NBCs-700℃ at different current densities

    图  6  (a) 比电容与电流密度的函数关系;(b) Fe2O3/NBCs-700℃的Nyquist曲线

    Figure  6.  (a) Functional relationship between specific capacitance and current density; (b) Nyquist curve of Fe2O3/NBCs-700℃

    图  7  NiCoFe-P不同倍数下的TEM图像

    Figure  7.  TEM images of NiCoFe-P at different multiples

    图  8  NiCoFe-P的XRD图谱

    Figure  8.  XRD patterns of NiCoFe-P

    图  9  NiCoFe-P的氮气吸附解析曲线 (a) 和孔径分布曲线 (b)

    Figure  9.  Nitrogen adsorption analysis curve (a) and pore size distribution curve (b) of NiCoFe-P

    图  10  (a) NiCoFe-P的XPS全谱图;(b) Ni2p;(c) Co2p;(d) Fe2p

    Figure  10.  (a) Full range XPS spectrum of NiCoFe-P; (b) Ni2p; (c) Co2p; (d) Fe2p

    图  11  NiCoFe-P:(a) 在三电极体系中不同扫描速率下的CV曲线;(b) 在不同电流密度下的GCD曲线;(c) 比电容与电流密度的函数关系;(d) Nyquist曲线

    Figure  11.  NiCoFe-P: (a) CV curves at different scanning rates in three electrode system; (b) GCD curves at different current densities; (c) Functional relationship between specific capacitance and current density; (d) Nyquist curve

    图  12  Fe2O3/NDCs-700℃//NiCoFe-P:(a) 不对称超级电容器结构示意图;(b) 不同电压区间的CV曲线;(c) 不同扫描速率下的CV曲线;(d) 不同电流密度下的GCD曲线

    Figure  12.  Fe2O3/NDCs-700℃//NiCoFe-P: (a) Structural diagram of asymmetric supercapacitor; (b) CV curves of different voltage intervals; (c) CV curves at different scanning rates; (d) GCD curves at different current densities

    图  13  Fe2O3/NBCs-700℃//NiCoFe-P:(a) 比电容与电流密度的函数关系;(b) Ragone图;(c) 在10 A·g−1下的循环性能;(d) Nyquistqt曲线

    Figure  13.  Fe2O3/NBCs-700℃//NiCoFe-P: (a) Functional relationship between specific capacitance and current density; (b) Ragone diagram; (c) Cycle performance at 10 A·g−1; (d) Nyquistqt curve

    表  1  Fe2O3/NBCs-700℃样品的元素含量

    Table  1.   Element content of Fe2O3/NBCs-700℃

    MaterialC/at%N/at%O/at%Fe/at%
    Fe2O3/NBCs-700℃47.527.4841.293.72
    下载: 导出CSV

    表  2  NiCoFe-P样品中的元素含量

    Table  2.   Element content of NiCoFe-P

    MaterialC/at%O/at%P/at%Fe/at%Co/at%Ni/at%
    NiCoFe-P24.6053.8617.171.871.940.55
    下载: 导出CSV
  • [1] WANG Y, DU Z, XIAO J, et al. Polypyrrole-encapsulated Fe2O3 nanotube arrays on a carbon cloth support: Achieving synergistic effect for enhanced supercapacitor performance[J]. Electrochimica Acta,2021,386:138486. doi: 10.1016/j.electacta.2021.138486
    [2] ZHU L, LAI S, ZHU J, et al. A facile and environmentally friendly method for preparing supercapacitor electrode carbon-based materials with ultra-long cycling stability[J]. Materials Today Communications,2022,31:103717. doi: 10.1016/j.mtcomm.2022.103717
    [3] WANG Y, WANG D, LI Z, et al. Preparation of boron/sulfur-codoped porous carbon derived from biological wastes and its application in a supercapacitor[J]. Nanomaterials,2022,12(7):1182. doi: 10.3390/nano12071182
    [4] ZHU S, DONG X, HUANG H, et al. Rich nitrogen-doped carbon on carbon nanotubes for high-performance sodium-ion supercapacitors[J]. Journal of Power Sources,2020,459:228104. doi: 10.1016/j.jpowsour.2020.228104
    [5] GANGULY A, KARAKASSIDES A, BENSON J, et al. Multifunctional structural supercapacitor based on urea-activated graphene nanoflakes directly grown on carbon fiber electrodes[J]. ACS Applied Energy Materials,2020,3(5):4245-4254. doi: 10.1021/acsaem.9b02469
    [6] MA C, WU L, DIRICAN M, et al. Carbon black-based porous sub-micron carbon fibers for flexible supercapacitors[J]. Applied Surface Science,2021,537:147914. doi: 10.1016/j.apsusc.2020.147914
    [7] NIE G, LUAN Y, KOU Z, et al. Fiber-in-tube and particle-in-tube hierarchical nanostructures enable high energy density of MnO2-based asymmetric supercapacitors[J]. Journal of Colloid and Interface Science,2021,582:543-551. doi: 10.1016/j.jcis.2020.08.066
    [8] LI S, FAN Z. Nitrogen-doped carbon mesh from pyrolysis of cotton in ammonia as binder-free electrodes of supercapacitors[J]. Microporous and Mesoporous Materials,2019,274:313-317. doi: 10.1016/j.micromeso.2018.09.002
    [9] JIANG L, HAN S O, PIRIE M, et al. Seaweed biomass waste-derived carbon as an electrode material for supercapacitor[J]. Energy & Environment,2021,32(6):1117-1129.
    [10] QIN L, HOU Z, ZHANG S, et al. Supercapacitive charge storage properties of porous carbons derived from pine nut shells[J]. Journal of Electroanalytical Chemistry,2020,866:114140. doi: 10.1016/j.jelechem.2020.114140
    [11] LIU L, FENG R, PAN Y, et al. Nanoporous carbons derived from poplar catkins for high performance supercapacitors with a redox active electrolyte of p-phenylenediamine[J]. Journal of Alloys and Compounds,2018,748:473-480. doi: 10.1016/j.jallcom.2018.03.073
    [12] HAO J, WANG J, QIN S, et al. B/N co-doped carbon nanosphere frameworks as high-performance electrodes for supercapacitors[J]. Journal of Materials Chemistry A,2018,6(17):8053-8058. doi: 10.1039/C8TA00683K
    [13] LIU Q, LI H, CUI X, et al. Controlled fabrication of nitrogen-doped carbon hollow nanospheres for high-performance supercapacitors[J]. Reactive and Functional Polymers,2019,144:104349.
    [14] ZHANG W, XU J, HOU D, et al. Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications[J]. Journal of Colloid and Interface Science,2018,530:338-344. doi: 10.1016/j.jcis.2018.06.076
    [15] GUAN L, PAN L, PENG T, et al. Synthesis of biomass-derived nitrogen-doped porous carbon nanosheests for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(9):8405-8412.
    [16] ZHAO Y, XU Y, ZENG J, et al. Low-crystalline mesoporous CoFe2O4/C composite with oxygen vacancies for high energy density asymmetric supercapacitors[J]. RSC Advances,2017,7(87):55513-55522. doi: 10.1039/C7RA11741H
    [17] ZHU M, KAN J, PAN J, et al. One-pot hydrothermal fabrication of α-Fe2O3@C nanocomposites for electrochemical energy storage[J]. Journal of Energy Chemistry,2019,28:1-8. doi: 10.1016/j.jechem.2017.09.021
    [18] HE X, CHEN Q, MAO X, et al. Pseudocapacitance electrode and asymmetric supercapacitor based on biomass juglone/activated carbon composites[J]. RSC Advances,2019,9(53):30809-30814. doi: 10.1039/C9RA05858C
    [19] CHUNG M Y, LO C T. High-performance binder-free RuO2/electrospun carbon fiber for supercapacitor electrodes[J]. Electrochimica Acta,2020,364:137324. doi: 10.1016/j.electacta.2020.137324
    [20] CHEN Q, CHEN J, ZHOU Y, et al. Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon[J]. Applied Surface Science,2018,440:1027-1036. doi: 10.1016/j.apsusc.2018.01.224
    [21] ZHAO J, TIAN Y, LIU A, et al. The NiO electrode materials in electrochemical capacitor: A review[J]. Materials Science in Semiconductor Processing,2019,96:78-90. doi: 10.1016/j.mssp.2019.02.024
    [22] HU X, WEI L, CHEN R, et al. Reviews and prospectives of Co3O4-based nanomaterials for supercapacitor application[J]. ChemistrySelect,2020,5(17):5268-5288. doi: 10.1002/slct.201904485
    [23] LI J F, CHEN D, WU Q S. α-Fe2O3 based carbon composite as pure negative electrode for application as supercapacitor[J]. European Journal of Inorganic Chemistry,2019,2019(10):1301-1312. doi: 10.1002/ejic.201900015
    [24] GUAN Y, JI P, WAN J, et al. Ag-modified Fe2O3 nanoparticles on a carbon cloth as an anode material for high-performance supercapacitors[J]. Nanotechnology,2020,31(12):125405. doi: 10.1088/1361-6528/ab5a29
    [25] MAZLOUM-ARDAKANI M, SABAGHIAN F, YAVARI M, et al. Enhance the performance of iron oxide nanoparticles in supercapacitor applications through internal contact of α-Fe2O3@CeO2 core-shell[J]. Journal of Alloys and Compounds,2020,819:152949. doi: 10.1016/j.jallcom.2019.152949
    [26] ZHANG X Y, LIAO H W, LIU X, et al. Facile synthesis of Fe2O3 nanospheres anchored on oxidized graphitic carbon nitride as a high-performance electrode material for supercapacitors[J]. International Journal of Electrochemical Science,2020,15(3):2133-2144.
    [27] 王辉辉, 郭俊娥, 高子昂. 绣球荚蒾状硫化钴@富氮炭的设计与构建及超级电容性能[J]. 复合材料学报, 2023, 40(8):4653-4663.

    WANG Huihui, GUO Jun'e, GAO Ziang. Design and fabrication of hydrangea viburnum-like cobalt sulfide@nitrogen-rich carbon for high-performance supercapacitors[J]. Acta Materiae Compositae Sinica,2023,40(8):4653-4663(in Chinese).
    [28] ALEXANDRELI M, BROCCHI C B, SOARES D M, et al. Pseudocapacitive behaviour of iron oxides supported on carbon nanofibers as a composite electrode material for aqueous-based supercapacitors[J]. Journal of Energy Storage,2021,42:103052. doi: 10.1016/j.est.2021.103052
    [29] DONG K J, YANG Z K, SHI D J, et al. Nitrogen-doped carbon boosting Fe2O3 anode performance for supercapacitors[J]. Journal of Materials Science: Materials in Electronics,2022,33(17):13547-13557.
    [30] VIMUNA V M, KARTHIKA U M, ALEX S, et al. Microsphere rGO/MnO2 composites as electrode materials for high-performance symmetric supercapacitors synthesized by reflux reaction[J]. Inorganic Chemistry Communications,2022,141:109508. doi: 10.1016/j.inoche.2022.109508
    [31] WANG L, YANG H, LIU X, et al. Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors[J]. Angewandte Chemie International Edition,2017,56(4):1105-1110. doi: 10.1002/anie.201609527
    [32] ZHANG Y, DENG F, ZHANG Q, et al. One-step synthesis of polymer based N-doped porous carbon with enriched nitrogen content and its enhanced electrochemical properties in supercapacitors[J]. Journal of Energy Storage,2022,55:105494. doi: 10.1016/j.est.2022.105494
    [33] JI L, WANG B, YU Y, et al. N, S co-doped biomass derived carbon with sheet-like microstructures for supercapacitors[J]. Electrochimica Acta,2020,331:135348. doi: 10.1016/j.electacta.2019.135348
    [34] SHU Y, MARUYAMA J, IWASAKI S, et al. Nitrogen-doped biomass/polymer composite porous carbons for high performance supercapacitor[J]. Journal of Power Sources,2017,364:374-382. doi: 10.1016/j.jpowsour.2017.08.059
    [35] ZHOU J, XU S, NI L, et al. Iron oxide encapsulated in nitrogen-doped carbon as high energy anode material for asymmetric supercapacitors[J]. Journal of Power Sources,2019,438:227047. doi: 10.1016/j.jpowsour.2019.227047
    [36] ZHANG S, YIN B, WANG Z, et al. Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods[J]. Chemical Engineering Journal,2016,306:193-203. doi: 10.1016/j.cej.2016.07.057
    [37] HU J, SUN L, XIE F, et al. A sandwich-like CoNiLDH@ rGO@CoNi2S4 electrode enabling high mass loading and high areal capacitance for solid-state supercapacitors[J]. Journal of Materials Chemistry A,2022,10(40):21590-21602. doi: 10.1039/D2TA05977K
    [38] CHEN J, REN Y, ZHANG H, et al. Ni-Co-Fe layered double hydroxide coated on Ti3C2 MXene for high-performance asymmetric supercapacitor[J]. Applied Surface Science,2021,562:150116. doi: 10.1016/j.apsusc.2021.150116
    [39] LIU R Q, SHI X R, WEN Y, et al. Trimetallic synergistic optimization of 0D NiCoFe-P QDs anchoring on 2D porous carbon for efficient electrocatalysis and high-energy supercapacitor[J]. Journal of Energy Chemistry,2022,74:149-158. doi: 10.1016/j.jechem.2022.07.015
    [40] JIANG J, SUN Y, CHEN Y, et al. One-step synthesis of nickel cobalt sulfide nanostructure for high-performance supercapacitor[J]. Journal of Materials Science,2019,54(18):11936-11950. doi: 10.1007/s10853-019-03746-8
    [41] 赵雪静, 孙晓君, 魏金枝, 等. 电化学法原位合成Zn/Co-ZIF材料及电容性能[J]. 复合材料学报, 2021, 38(5):1543-1550. doi: 10.13801/j.cnki.fhclxb.20200831.001

    ZHAO Xuejing, SUN Xiaojun, WEI Jinzhi, et al. Electrochemical synthesis of Zn/Co-ZIF material and capacitive properties[J]. Acta Materiae Compositae Sinica,2021,38(5):1543-1550(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200831.001
    [42] CAI D, DU J, ZHU C, et al. Iron oxide nanoneedles anchored on N-doped carbon nanoarrays as an electrode for high-performance hybrid supercapacitor[J]. ACS Applied Energy Materials,2020,3(12):12162-12171. doi: 10.1021/acsaem.0c02238
    [43] LI P, XIE H, WANG X, et al. Sustainable production of nano α-Fe2O3/N-doped biochar hybrid nanosheets for supercapacitors[J]. Sustainable Energy & Fuels,2020,4(9):4522-4530.
    [44] LUAN Y, NIE G, ZHAO X, et al. The integration of SnO2 dots and porous carbon nanofibers for flexible supercapacitors[J]. Electrochimica Acta,2019,308:121-130. doi: 10.1016/j.electacta.2019.03.204
    [45] YUE L, ZHANG S, ZHAO H, et al. One-pot synthesis CoFe2O4/CNTs composite for asymmetric supercapacitor electrode[J]. Solid State Ionics,2019,329:15-24. doi: 10.1016/j.ssi.2018.11.006
    [46] JI S H, CHODANKAR N R, KIM D H. Aqueous asymmetric supercapacitor based on RuO2-WO3 electrodes[J]. Electrochimica Acta,2019,325:134879. doi: 10.1016/j.electacta.2019.134879
    [47] 苏小辉, 谢启星, 何青青, 等. α-MnO2@氮掺杂TiO2/碳纸多孔结构构筑高性能超级电容器[J]. 复合材料学报, 2022, 39(4):1628-1637.

    SU Xiaohui, XIE Qixing, HE Qingqing, et al. Building a high-performance supercapacitor with α-MnO2@nitrided TiO2/carbon fiber paper porous structure[J]. Acta Materiae Compositae Sinica,2022,39(4):1628-1637(in Chinese).
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  113
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2022-12-26
  • 录用日期:  2023-01-08
  • 网络出版日期:  2023-01-18
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回