留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

羧基化多壁碳纳米管对PBAT/PLA反应性增容体系界面状态及性能的影响

王平 宋杰 刘佳佳 田洪瑜 陆海冰 朱露芳 杨利 仕敏 曹田

王平, 宋杰, 刘佳佳, 等. 羧基化多壁碳纳米管对PBAT/PLA反应性增容体系界面状态及性能的影响[J]. 复合材料学报, 2023, 40(10): 5772-5781. doi: 10.13801/j.cnki.fhclxb.20230110.002
引用本文: 王平, 宋杰, 刘佳佳, 等. 羧基化多壁碳纳米管对PBAT/PLA反应性增容体系界面状态及性能的影响[J]. 复合材料学报, 2023, 40(10): 5772-5781. doi: 10.13801/j.cnki.fhclxb.20230110.002
WANG Ping, SONG Jie, LIU Jiajia, et al. Influence of carboxylic multi-walled carbon nanotubes on the interface state and properties of PBAT/PLA reactive compatibilization system[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5772-5781. doi: 10.13801/j.cnki.fhclxb.20230110.002
Citation: WANG Ping, SONG Jie, LIU Jiajia, et al. Influence of carboxylic multi-walled carbon nanotubes on the interface state and properties of PBAT/PLA reactive compatibilization system[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5772-5781. doi: 10.13801/j.cnki.fhclxb.20230110.002

羧基化多壁碳纳米管对PBAT/PLA反应性增容体系界面状态及性能的影响

doi: 10.13801/j.cnki.fhclxb.20230110.002
基金项目: 国家自然科学基金(51903002);安徽省科技重大专项项目(202103a05020031);安徽省高校自然科学杰出青年科研项目(2022AH020024);安徽省高校哲学社会科学重大研究项目(2022AH040047);安徽建筑大学博士启动基金(2019QDZ22);安徽省自然科学基金优青项目(2308085Y34);安徽省博士后研究人员科研活动经费资助项目(2020B413);安徽省高校省级自然科学研究项目(YJS20210509)
详细信息
    通讯作者:

    王平,博士,副教授,硕士生导师,研究方向为精细与功能高分子的合成与应用、高分子材料共混与复合 E-mail: anjzwp@ahjzu.edu.cn

  • 中图分类号: TB332

Influence of carboxylic multi-walled carbon nanotubes on the interface state and properties of PBAT/PLA reactive compatibilization system

Funds: National Natural Science Foundation of China (51903002); Major Science and Technology Projects of Anhui Province (202103a05020031); University Natural Science Outstanding Youth Research Projects of Anhui Province (2022AH020024); University Major Research Projects in Philosophy and Social Sciences of Anhui Province (2022AH040047); Anhui Jianzhu University PhD Startup Fund (2019QDZ22); Excellent Youth Projects of Anhui Provincal Natural Science Foundation (2308085Y34); Research Fund for Postdoctoral Researchers in Anhui Province (2020B413); University Provincial Natural Science Research Projects of Anhui Province (YJS20210509)
  • 摘要: 聚乳酸(PLA)因其生物可降解及较高的强度在环保型介电材料制备上具有较大的潜力,但较低的介电常数限制了其在该领域的应用。通过熔融共混法将羧基化多壁碳纳米管(MWCNTs—COOH)、环氧扩链剂(ADR)及聚对苯二甲酸-己二酸丁二醇酯(PBAT)引入PLA中制备MWCNTs—COOH-ADR-PBAT/PLA复合材料。采用FTIR、转矩流变仪、DSC、DMA、电子万能试验机、SEM和LCR介电测量仪等研究MWCNTs—COOH对PBAT/PLA反应性增容体系的分子链间相互作用、加工性能、结晶性能、动态力学性能、力学性能及介电性能的影响。研究结果表明,共混过程中MWCNTs—COOH中羧基优先与反应增容剂反应,降低了反应增容剂对PLA与PBAT相界面的催化增容效率。MWCNTs—COOH在动力学和热力学的驱动下优先分散于两相界面处,赋予材料优异刚韧平衡性的同时,明显提高了材料的介电性能。当MWCNTs—COOH含量为4wt%时,在频率100 Hz下,MWCNTs—COOH-ADR-PBAT/PLA复合材料的介电常数为5.35、介电损耗为0.06,材料具有较好的综合性能。

     

  • 图  1  PLA及其共混复合材料的FTIR图谱

    Figure  1.  FTIR spectra of PLA and PLA blend composites

    图  2  PLA及其共混复合材料扭矩-时间关系曲线

    Figure  2.  Torque-time relationship curves of PLA and PLA blend composites

    图  3  PLA及其共混复合材料脆断面的SEM图像:(a) 1wt%MWCNTs—COOH-ADR-PBAT/PLA;(b) 2wt%MWCNTs—COOH-ADR-PBAT/PLA;(c) 3wt%MWCNTs—COOH-ADR-PBAT/PLA;(d) 4wt%MWCNTs—COOH-ADR-PBAT/PLA

    Figure  3.  SEM images of the brittle fracture surface of PLA blend composites: (a) 1wt%MWCNTs—COOH-ADR-PBAT/PLA; (b) 2wt%MWCNTs—COOH-ADR-PBAT/PLA; (c) 3wt%MWCNTs—COOH-ADR-PBAT/PLA; (d) 4wt%MWCNTs—COOH-ADR-PBAT/PLA

    图  4  PLA及其共混复合材料的DSC二次升温曲线

    Figure  4.  DSC secondary heating curves of PLA and PLA blend composites

    图  5  PLA及其共混复合材料的储能模量(E') (a) 和损耗模量(E'') (b) 曲线

    Figure  5.  Storage modulus (E') (a) and loss modulus (E'') (b) curves of PLA and PLA blend composites

    图  6  PLA及其共混复合材料的拉伸强度和断裂伸长率

    Figure  6.  Tensile strength and elongation at break of PLA and PLA blend composites

    图  7  PLA及其共混复合材料拉伸断面的SEM图像:(a) PLA;(b) PBAT/PLA;(c) ADR-PBAT/PLA;(d) 1wt%MWCNTs—COOH-ADR-PBAT/PLA;(e) 2wt%MWCNTs—COOH-ADR-PBAT/PLA;(f) 3wt%MWCNTs—COOH-ADR-PBAT/PLA;(g) 4wt%MWCNTs—COOH-ADR-PBAT/PLA

    Figure  7.  SEM images of tensile fracture surface of PLA and PLA blend composites: (a) PLA; (b) PBAT/PLA; (c) ADR-PBAT/PLA; (d) 1wt%MWCNTs—COOH-ADR-PBAT/PLA; (e) 2wt%MWCNTs—COOH-ADR-PBAT/PLA; (f) 3wt%MWCNTs—COOH-ADR-PBAT/PLA; (g) 4wt%MWCNTs— COOH-ADR-PBAT/PLA

    图  8  PLA及其共混复合材料的介电常数(ε') (a) 和介电损耗(tanδ) (b) 与频率的关系

    Figure  8.  Frequency dependence of dielectric constant (ε') (a) and dielectric loss (tanδ) (b) for PLA and PLA blend composites

    图  9  MWCNTs—COOH在复合材料内部分散状态及形成机制

    Figure  9.  Dispersion and formation mechanism of MWCNTs—COOH in composites

    表  1  聚乳酸(PLA)及其共混复合材料的组成与配比

    Table  1.   Composition of polylactic acid (PLA) and PLA blend composites

    SamplePLA/wt%PBAT/wt%ADR/wt%MWCNTs—COOH/wt%
    PLA100.0
    PBAT/PLA 60.040.0
    ADR-PBAT/PLA 58.839.22.0
    1wt%MWCNTs—COOH-ADR-PBAT/PLA 58.238.82.01.0
    2wt%MWCNTs—COOH-ADR-PBAT/PLA 57.638.42.02.0
    3wt%MWCNTs—COOH-ADR-PBAT/PLA 57.038.02.03.0
    4wt%MWCNTs—COOH-ADR-PBAT/PLA 56.437.62.04.0
    Notes: MWCNTs—COOH—Carboxylic multi-walled carbon nanotubes; ADR—Epoxy-based chain extender; PBAT—Poly(butylene adipate-co-terephthalate).
    下载: 导出CSV

    表  2  PLA及其共混复合材料的扭矩

    Table  2.   Torque of PLA and PLA blend composites

    SampleTorque/(N·m)
    PLA9.9
    PBAT/PLA4.1
    ADR-PBAT/PLA9.8
    1wt%MWCNTs—COOH-ADR-PBAT/PLA8.6
    2wt%MWCNTs—COOH-ADR-PBAT/PLA9.3
    3wt%MWCNTs—COOH-ADR-PBAT/PLA9.6
    4wt%MWCNTs—COOH-ADR-PBAT/PLA9.3
    下载: 导出CSV

    表  3  PLA及其共混复合材料热力学参数

    Table  3.   Thermodynamic parameters of PLA and PLA blend composites

    SampleTg/℃Tcc/℃∆Hcc/(J∙g−1)Tm/℃Hm/(J∙g−1)χc/%
    PLA60.5108.531.9170.236.24.6
    PBAT124.8
    PBAT/PLA60.9101.117.5169.219.94.4
    ADR-PBAT/PLA61.6118.717.2164.317.40.4
    1wt%MWCNTs—COOH-ADR-PBAT/PLA61.7114.515.7164.417.22.8
    2wt%MWCNTs—COOH-ADR-PBAT/PLA64.0115.615.0166.015.30.6
    3wt%MWCNTs—COOH-ADR-PBAT/PLA62.3116.214.2166.114.40.4
    4wt%MWCNTs—COOH-ADR-PBAT/PLA61.0114.014.2163.815.01.5
    Notes: Tg—Glass transition temperature; Tcc—Cold crystallization temperature; ∆Hcc—Cold crystallization enthalpy; Tm—Melting temperature; ∆Hm— Melting enthalpy; χc—Crystallinity.
    下载: 导出CSV

    表  4  PLA及其共混复合材料拉伸测试参数

    Table  4.   Tensile test parameters of PLA and PLA blend composites

    SampleTensile strength/MPaElongation at break/%
    PLA 61.8 4.1
    PBAT/PLA 26.9 28.5
    ADR-PBAT/PLA 31.8 287.5
    1wt%MWCNTs—COOH-
    ADR-PBAT/PLA
    22.0 57.9
    2wt%MWCNTs—COOH-
    ADR-PBAT/PLA
    24.3 61.7
    3wt%MWCNTs—COOH-
    ADR-PBAT/PLA
    23.7 40.5
    4wt%MWCNTs—COOH-
    ADR-PBAT/PLA
    23.0 18.0
    下载: 导出CSV
  • [1] 谢蕊颖, 刘雷鹏, 吕生华, 等. 高储能PVDF基纳米复合材料研究进展[J]. 绝缘材料, 2022, 55(3):1-9. doi: 10.16790/j.cnki.1009-9239.im.2022.03.001

    XIE Ruiying, LIU Leipeng, LYU Shenghua, et al. Research progress of PVDF-based nanocomposites for high energy storage[J]. Insulating Materials,2022,55(3):1-9(in Chinese). doi: 10.16790/j.cnki.1009-9239.im.2022.03.001
    [2] CHEN R, LIU Y, PENG F Z. A solid state variable capacitor with minimum capacitor[J]. IEEE Transactions on Power Electronics,2017,32(7):5035-5044. doi: 10.1109/TPEL.2016.2606582
    [3] HU Z, LIU X, REN T, et al. Research progress of low dielectric constant polymer materials[J]. Journal of Polymer Engineering,2022,42(8):677-687. doi: 10.1515/polyeng-2021-0338
    [4] TAN D Q. The search for enhanced dielectric strength of polymer-based dielectrics: A focused review on polymer nanocomposites[J]. Journal of Applied Polymer Science,2020,137(33):49379. doi: 10.1002/app.49379
    [5] URQUIJO J, ARANBURU N, DAGRÉOU S, et al. CNT-induced morphology and its effect on properties in PLA/PBAT-based nanocomposites[J]. European Polymer Journal,2017,93:545-555. doi: 10.1016/j.eurpolymj.2017.06.035
    [6] DING Y, LU B, WANG P, et al. PLA-PBAT-PLA tri-block copolymers: Effective compatibilizers for promotion of the mechanical and rheological properties of PLA/PBAT blends[J]. Polymer Degradation and Stability,2018,147:41-48. doi: 10.1016/j.polymdegradstab.2017.11.012
    [7] JANG H, KWON S, KIM S J, et al. Maleic anhydride-grafted PLA preparation and characteristics of compatibilized PLA/PBSeT blend films[J]. International Journal of Molecular Sciences,2022,23(13):7166. doi: 10.3390/ijms23137166
    [8] 尚晓煜, 刘晓南, 谢锦辉, 等. PLA/PBAT复合材料研究进展[J]. 工程塑料应用, 2021, 49(6):157-164.

    SHANG Xiaoyu, LIU Xiaonan, XIE Jinhui, et al. Advance in research of polylactic acid/poly(butyleneadipate-co-terephthalate) composites[J]. Engineering Plastics Application,2021,49(6):157-164(in Chinese).
    [9] WANG X, PENG S, CHEN H, et al. Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization[J]. Composites Part B: Engineering,2019,173:107028. doi: 10.1016/j.compositesb.2019.107028
    [10] DENG Y, YU C, WONGWIWATTANA P, et al. Optimising ductility of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends through co-continuous phase morphology[J]. Journal of Polymers and the Environment,2018,26(9):3802-3816. doi: 10.1007/s10924-018-1256-x
    [11] SRITHAM E, PHUNSOMBAT P, CHAISHOME J. Tensile properties of PLA/PBAT blend systems and PLA fibre-reinforced PBAT composite[C]//MATEC Web of Conferences. Paris: EDP Sciences, 2018, 192: 03014.
    [12] 赵海鹏, 胡顺朋, 夏学莲, 等. 扩链剂增容PBAT/PLA共混体系结构及性能[J]. 工程塑料应用, 2021, 49(10):131-137.

    ZHAO Haipeng, HU Shunpeng, XIA Xuelian, et al. Structures and properties of PBAT/PLA composites with chain extender[J]. Engineering Plastics Application,2021,49(10):131-137(in Chinese).
    [13] WANG B, JIN Y, KANG K, et al. Investigation on compatibility of PLA/PBAT blends modified by epoxy-terminated branched polymers through chemical micro-crosslinking[J]. e-Polymers,2020,20(1):39-54. doi: 10.1515/epoly-2020-0005
    [14] FARIAS DA SILVA J M, SOARES B G. Epoxidized cardanol-based prepolymer as promising biobased compatibilizing agent for PLA/PBAT blends[J]. Polymer Testing,2021,93:106889. doi: 10.1016/j.polymertesting.2020.106889
    [15] JIA S, YU D, ZHU Y, et al. A feasible strategy to constructing hybrid conductive networks in PLA-based composites modified by CNT-d-RGO particles and PEG for mechanical and electrical properties[J]. Polymers for Advanced Technologies,2020,31(4):699-712. doi: 10.1002/pat.4806
    [16] WANG P, GAO S, CHEN X, et al. Effect of hydroxyl and carboxyl-functionalized carbon nanotubes on phase morphology, mechanical and dielectric properties of poly (lactide)/poly(butylene adipate-co-terephthalate) composites[J]. International Journal of Biological Macromolecules,2022,206:661-669. doi: 10.1016/j.ijbiomac.2022.02.183
    [17] International Organization for Standardization. Plastics—Determination of tensile properties—Part 1: General principles: ISO 527-1—2019[S]. Geneva: International Organization for Standardization, 2019.
    [18] ALIOTTA L, CINELLI P, COLTELLI M B, et al. Rigid filler toughening in PLA-calcium carbonate composites: Effect of particle surface treatment and matrix plasticization[J]. European Polymer Journal,2019,113:78-88. doi: 10.1016/j.eurpolymj.2018.12.042
    [19] SUN H, ZHANG H, LIU S, et al. Interfacial polarization and dielectric properties of aligned carbon nanotubes/polymer composites: The role of molecular polarity[J]. Composites Science and Technology,2018,154:145-153. doi: 10.1016/j.compscitech.2017.11.008
    [20] ZHANG T, HAN W Y, ZHANG C L, et al. Effect of chain extender and light stabilizer on the weathering resistance of PBAT/PLA blend films prepared by extrusion blowing[J]. Polymer Degradation and Stability,2021,183:109455. doi: 10.1016/j.polymdegradstab.2020.109455
    [21] WU D D, GUO Y, HUANG A P, et al. Effect of the multi-functional epoxides on the thermal, mechanical and rheological properties of poly(butylene adipate-co-terephthalate)/polylactide blends[J]. Polymer Bulletin,2021,78(10):5567-5591. doi: 10.1007/s00289-020-03379-x
    [22] WANG P, SONG T, ABO-DIEF H M, et al. Effect of carbon nanotubes on the interface evolution and dielectric properties of polylactic acid/ethylene-vinyl acetate copolymer nanocomposites[J]. Advanced Composites and Hybrid Materials,2022,5(2):1100-1110.
    [23] WANG P, ZHOU Y, HU X, et al. Improved mechanical and dielectric properties of PLA/EMA-GMA nanocomposites based on ionic liquids and MWCNTs[J]. Composites Science and Technology,2020,200:108347. doi: 10.1016/j.compscitech.2020.108347
    [24] TANNER K E, WANG J S, KJELLSON F, et al. Comparison of two methods of fatigue testing bone cement[J]. Acta Biomaterialia,2010,6(3):943-952. doi: 10.1016/j.actbio.2009.09.009
    [25] URQUIJO J, DAGRÉOU S, GUERRICA-ECHEVARRÍA G, et al. Morphology and properties of electrically and rheologically percolated PLA/PCL/CNT nanocomposites[J]. Journal of Applied Polymer Science,2017,134(36):45265. doi: 10.1002/app.45265
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  137
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 修回日期:  2022-12-14
  • 录用日期:  2022-12-25
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回