留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活性氯改性锆基MOF复合材料用于高效抑菌

谷娜 王田田 李红 任伟杰 董倩茹 高金龙

谷娜, 王田田, 李红, 等. 活性氯改性锆基MOF复合材料用于高效抑菌[J]. 复合材料学报, 2023, 40(10): 5760-5771. doi: 10.13801/j.cnki.fhclxb.20230104.001
引用本文: 谷娜, 王田田, 李红, 等. 活性氯改性锆基MOF复合材料用于高效抑菌[J]. 复合材料学报, 2023, 40(10): 5760-5771. doi: 10.13801/j.cnki.fhclxb.20230104.001
GU Na, WANG Tiantian, LI Hong, et al. Activated chlorine-modified zirconium-based MOF composites for efficient bacterial inhibition[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5760-5771. doi: 10.13801/j.cnki.fhclxb.20230104.001
Citation: GU Na, WANG Tiantian, LI Hong, et al. Activated chlorine-modified zirconium-based MOF composites for efficient bacterial inhibition[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5760-5771. doi: 10.13801/j.cnki.fhclxb.20230104.001

活性氯改性锆基MOF复合材料用于高效抑菌

doi: 10.13801/j.cnki.fhclxb.20230104.001
详细信息
    通讯作者:

    高金龙,硕士,副教授,硕士生导师,研究方向为载药纳米材料和水环境污染功能材料 E-mail: 841230252@qq.com

  • 中图分类号: TQ134.1

Activated chlorine-modified zirconium-based MOF composites for efficient bacterial inhibition

  • 摘要: 近年来,工业化污染严重导致各类细菌滋生,致病性细菌感染可通过各种方式进行快速传播,存在很大的感染风险。因此,开发高性能的抑菌材料并研究其抑菌机制具有重要的应用价值。为了解决这一问题,本文设计通过亚氯酸钠溶液改性锆基金属-有机骨架材料UiO-66-NH2,制备了一种新型纳米复合抑菌材料UiO-66-NHCl,采用XRD、FTIR、SEM、TEM、EDS和XPS等对金属-有机骨架(MOF)复合材料结构和化学组成进行表征,同时探索不同负载工艺对氯负载量的影响,并对UiO-66-NHCl复合材料的抑菌性能及皮肤刺激性实验进行研究。结果表明:通过浸渍键合的方法在UiO-66-NH2上引入了活性氯,改变UiO-66-NH2在NaClO2溶液中的氯负载比例(质量比m(UiO-66-NH2)∶m(NaClO2))和氯化时间可以提高氯负载量,当氯负载比例为1∶5、氯化时间为4 h时,氯负载量最高;在高温、高湿和强光等条件下,仍能保持其原始氯负载量的80%,有较好的稳定性。抑菌活性表明,相比于原始UiO-66-NH2材料,UiO-66-NHCl复合材料对金黄色葡萄球菌和大肠杆菌均有抑制作用,氯含量较高的样品显示出较高的抑菌效果,且无刺激性。

     

  • 图  1  UiO-66-NH2和UiO-66-NHCl的XRD图谱:(a) 不同氯负载比例;(b) 不同氯化时间

    Figure  1.  XRD patterns of UiO-66-NH2和UiO-66-NHCl: (a) Different chlorine loading ratios; (b) Different chlorination time

    图  2  UiO-66-NH2/NaClO2的SEM图像:((a)~(d)) 负载比例分别为1∶3、1∶5、1∶7、1∶9;((e)~(h)) 氯化时间分别为0.5 h、2 h、4 h、6 h

    Figure  2.  SEM images of UiO-66-NH2/NaClO2: ((a)-(d)) Loading ratios of 1∶3, 1∶5, 1∶7, 1∶9; ((e)-(h)) Chlorination time of 0.5 h, 2 h, 4 h, 6 h, respectively

    图  3  UiO-66-NH2加KI溶液(左);UiO-66-NHCl加KI溶液(中);UiO-66-NHCl加KI溶液后滴定(右)

    Figure  3.  KI solution added to UiO-66-NH2 (left); KI solution added to UiO-66-NHCl (middle); KI solution added to UiO-66-NHCl after titration (right)

    图  4  UiO-66-NH2和UiO-66-NHCl的XRD图谱

    Figure  4.  XRD patterns of UiO-66-NH2 and UiO-66-NHCl

    图  5  UiO-66-NH2和UiO-66-NHCl的FTIR图谱

    Figure  5.  FTIR spectra of UiO-66-NH2 and UiO-66-NHCl

    图  6  UiO-66-NH2 ((a)~(c))和UiO-66-NHCl ((d)~(f))的SEM图像

    Figure  6.  SEM images of UiO-66-NH2 ((a)-(c)) and UiO-66-NHCl ((d)-(f))

    图  7  UiO-66-NH2 ((a)~(c))和UiO-66-NHCl ((d)~(f))的TEM图像

    Figure  7.  TEM images of UiO-66-NH2 ((a)-(c)) and UiO-66-NHCl ((d)-(f))

    图  8  UiO-66-NH2和UiO-66-NHCl的EDS元素分析((a), (b));UiO-66-NHCl的元素分布图像((c)~(f))

    Figure  8.  EDS elemental analysis of UiO-66-NH2 and UiO-66-NHCl ((a), (b)); Elemental distribution images of UiO-66-NHCl ((c)-(f))

    图  9  (a) UiO-66-NH2和UiO-66-NHCl的XPS全谱图;(b) C1s;(c) O1s;(d) Zr3d;(e) N1s;(f) Cl2p

    Figure  9.  (a) Total XPS spectra of UiO-66-NH2 and UiO-66-NHCl; (b) C1s; (c) O1s; (d) Zr3d; (e) N1s; (f) Cl2p

    图  10  UiO-66-NHCl在不同条件下的稳定性实验结果

    Figure  10.  Experimental results on the stability of UiO-66-NHCl under different conditions

    图  11  UiO-66-NHCl复合材料对金黄色葡萄球菌的抑菌效果

    Figure  11.  Bacterial inhibition effect of UiO-66-NHCl composite against Staphylococcus aureus

    图  12  UiO-66-NHCl复合材料对大肠杆菌的抑菌效果

    Figure  12.  Bacterial inhibition effect of UiO-66-NHCl composites on Escherichia coli

    图  13  UiO-66-NH2材料改性前后对金黄色葡萄球菌的抑菌结果影响

    Figure  13.  Effect of inhibition results of UiO-66-NH2 material on Staphylococcus aureus before and after modification

    图  14  UiO-66-NH2材料改性前后对大肠杆菌的抑菌结果影响

    Figure  14.  Effect of inhibition results of UiO-66-NH2 material on Escherichia coli before and after modification

    表  1  皮肤刺激性反应评分标准

    Table  1.   Skin irritation response scoring criteria

    ErythemaScoreEdemaScore
    No0No0
    Mildly (barely visible)1Mildly (barely visible)1
    Moderately (clearly visible)2Moderately (visible bulge)2
    Severely3Severely (skin augmentation of 1 mm, clear contours)3
    下载: 导出CSV

    表  2  活性氯负载比例与氯化时间对氯负载量的影响

    Table  2.   Effect of active chlorine loading ratio and chlorination time on chlorine loading

    No.Chlorine
    load ratio
    Chlorination
    time/h
    Chlorine
    loading/wt%
    11∶346.65
    21∶549.35
    31∶747.12
    41∶949.04
    51∶50.54.85
    61∶528.40
    71∶549.11
    81∶568.54
    下载: 导出CSV

    表  3  UiO-66-NHCl复合材料在高温、高湿和强光条件下的抑菌圈直径的影响(标准差,±SD mm)

    Table  3.   Effect of UiO-66-NHCl composites on the diameter of the inhibition circle under high temperature, high humidity and strong light conditions (Standard deviation, ±SD mm)

    StrainsFactorsDiameter/mm
    0 d5 d10 d15 d20 d25 d30 d
    Staphylococcus aureusHigh temperature10.12±0.319.57±0.299.13±0.378.76±0.348.04±0.417.69±0.297.25±0.38
    High humidity10.33±0.289.88±0.349.32±0.148.94±0.258.25±0.187.91±0.437.63±0.36
    Bright light10.14±0.199.62±0.169.17±0.218.82±0.328.15±0.287.83±0.377.33±0.45
    Escherichia coliHigh temperature10.07±0.279.61±0.379.05±0.358.62±0.288.01±0.327.52±0.477.16±0.39
    High humidity10.21±0.249.82±0.299.14±0.368.77±0.358.19±0.277.74±0.427.33±0.32
    Bright light10.11±0.329.67±0.269.09±0.428.53±0.298.08±0.367.67±0.517.25±0.43
    下载: 导出CSV

    表  4  浓度对UiO-66-NHCl和UiO-66-NH2材料抑菌圈直径的影响对比(±SD mm)

    Table  4.   Comparison of the effect of concentration on the diameter of the inhibition circle of UiO-66-NHCl and UiO-66-NH2

    StrainsSampleDiameter/mm
    200 mg/L300 mg/L400 mg/L500 mg/L600 mg/L
    Staphylococcus aureusUiO-66-NHCl7.88±0.488.55±0.558.96±0.329.58±0.3210.03±0.41
    UiO-66-NH200000
    Escherichia coliUiO-66-NHCl7.94±0.518.27±0.438.73±0.239.21±0.189.98±0.34
    UiO-66-NH200000
    下载: 导出CSV

    表  5  UiO-66-NHCl多次给药皮肤刺激反应实验结果

    Table  5.   Experimental results of skin irritation response to multiple doses of UiO-66-NHCl

    Dosing time/dComplete skin group (Score)Damaged skin group (Score)
    UiO-66-NHClWaterUiO-66-NHClWater
    10000
    20000
    30000
    40000
    50000
    60000
    70000
    下载: 导出CSV
  • [1] PETERSON G W, LEE D T, BARTON H F, et al. Fibre-based composites from the integration of metal-organic frameworks and polymers[J]. Nature Reviews Materials,2021,6(7):605-621. doi: 10.1038/s41578-021-00291-2
    [2] 孙丹, 宿丽娟, 鞠晓红. 579株肠杆菌科细菌感染的临床特征及耐药性分析[J]. 吉林医药学院学报, 2022, 43(6):416-419. doi: 10.13845/j.cnki.issn1673-2995.2022.06.023

    SUN Dan, SU Lijuan, JU Xiaohong. Clinical characteristics and drug resistance of 579 strains of Enterobacteriaceae[J]. Journal of Jilin Medical College,2022,43(6):416-419(in Chinese). doi: 10.13845/j.cnki.issn1673-2995.2022.06.023
    [3] 陈康. 多重耐药革兰阴性杆菌下呼吸道感染的临床分析[J]. 中国处方药, 2021, 19(8):172-174. doi: 10.3969/j.issn.1671-945X.2021.08.080

    CHEN Kang. Clinical analysis of multidrug-resistant gram-negative bacilli in lower respiratory tract infection[J]. Journal of China Prescription Drug,2021,19(8):172-174(in Chinese). doi: 10.3969/j.issn.1671-945X.2021.08.080
    [4] DING X, YANG C, MOREIRA W, et al. A macromolecule reversing antibiotic resistance phenotype and repurposing drugs as potent antibiotics[J]. Advanced Science,2020,7(17):2001374. doi: 10.1002/advs.202001374
    [5] PAPKOU A, HEDGE J, KAPEL N, et al. Efflux pump activity potentiates the evolution of antibiotic resistance across S. aureus isolates[J]. Nature Communications,2020,11:3970. doi: 10.1038/s41467-020-17735-y
    [6] YAN L, GOPAL A, KASHIF S, et al. Metal organic frameworks for antibacterial applications[J]. Chemical Engineering Journal,2022,435:134975. doi: 10.1016/j.cej.2022.134975
    [7] PEJMAN M, FIROUZJAEI M D, AKTIJ S A, et al. Improved antifouling and antibacterial properties of forward osmosis membranes through surface modification with zwitterions and silver-based metal organic frameworks[J]. Journal of Membrane Science,2020,611:118352. doi: 10.1016/j.memsci.2020.118352
    [8] AYYAGARI S, AL-HAIK M, REN Y, et al. Metal organic frameworks modification of carbon fiber composite interface[J]. Composites Part B: Engineering,2021,224:109197. doi: 10.1016/j.compositesb.2021.109197
    [9] SUN H, DAN J, LIANG Y M, et al. Dimensionality reduction boosts the peroxidaselike activity of bimetallic MOFs for enhanced multidrug-resistant bacteria eradication[J]. Nanoscale,2022,14(32):11693-11702. doi: 10.1039/d2nr02828j
    [10] RAZA H, YILDIZ I, YASMEEN F, et al. Synthesis of a 2D copper (II)-carboxylate framework having ultrafast adsorption of organic dyes[J]. Journal of Colloid and Interface Science,2021,602:43-54. doi: 10.1016/j.jcis.2021.05.169
    [11] HATAMIE S, AHADIAN M M, ZOMOROD M S, et al. Antibacterial properties of nanoporous graphene oxide/cobalt metal organic framework[J]. Materials Science and Engineering: C,2019,104:109862. doi: 10.1016/j.msec.2019.109862
    [12] ZHENG S S, ZHOU H J, XUE H G, et al. Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage[J]. Journal of Colloid and Interface Science,2022,614:130-137. doi: 10.1016/j.jcis.2022.01.094
    [13] ZHOU D B, CHEN Y X, BU W H, et al. Modification of metal-organic framework nanoparticles using dental pulp mesenchymal stem cell membranes to target oral squamous cell carcinoma[J]. Journal of Colloid and Interface Science,2021,601:650-660. doi: 10.1016/j.jcis.2021.05.126
    [14] LI T, JIN Z. Unique ternary Ni-MOF-74/Ni2P/MoSX composite for efficient photocatalytic hydrogen production: Role of Ni2P for accelerating separation of photogenerated carriers[J]. Journal of Colloid and Interface Science,2022,605:385-397. doi: 10.1016/j.jcis.2021.07.098
    [15] LIANG L F, LIU C P, JIANG F L, et al. Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework[J]. Nature Communications,2017,8:1-10. doi: 10.1038/s41467-016-0009-6
    [16] 郝凌婉. 新型金属有机骨架复合膜的制备及其抗菌性能的研究[D]. 长春: 吉林大学, 2021.

    HAO Lingwan. Preparation and antibacterial application of novel metal-organic frameworks somposite films[D]. Changchun: Jilin University, 2021(in Chinese).
    [17] 余方锦, 巫晨静, 吴贻强, 等. 金属有机骨架抗菌性能的研究进展[J]. 中国卫生检验杂志, 2022, 32(14):1782-1785.

    YU Fangjin, WU Chenjing, WU Yiqiang, et al. Advances in antibacterial properties of metal organic skeletons[J]. Chinese Journal of Health Laboratory Technology,2022,32(14):1782-1785(in Chinese).
    [18] 刘瑶瑶. 卟啉金属有机骨架的光动力杀菌性能及其复合抗菌膜应用研究[D]. 无锡: 江南大学, 2021.

    LIU Yaoyao. Photodynamic sterilization performance of porphyrinic metal-organic frameworks and the application of composite antibacterial film[D]. Wuxi: Jiangnan University, 2021(in Chinese).
    [19] 裴震, 郭建栋, 张倩, 等. 金属-有机骨架抗菌复合材料与纤维的研究进展及应用[J]. 复合材料学报, 2021, 38(8):2396-2403. doi: 10.13801/j.cnki.fhclxb.20210507.001

    PEI Zhen, GUO Jiandong, ZHANG Qian, et al. Research progress and application of metal-organic frameworks antibacterial composite materials and fibers[J]. Acta Materiae Compositae Sinica,2021,38(8):2396-2403(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210507.001
    [20] 黄文光, 张淑娟. UIO-66-NH2金属有机骨架材料的键合改性[C]//2018第二届全国光催化材料创新与应用学术研讨会摘要集. 长沙: 中国化工学会, 2018: 27.

    HUANG Wenguang, ZHANG Shujuan. Bonding modification of UIO-66-NH2 metal-organic backbone materials[C]// 2018 2nd National Symposium on Innovation and Application of Photocatalytic Materials Abstracts Collection. Changsha: The Chemical Industry and Engineering Society of China, 2018: 27(in Chinese).
    [21] ZHANG X, HAO X X, QIU S H, et al. Efficient capture and release of carboxylated benzisothiazolinone from UiO-66-NH2 for antibacterial and antifouling applications[J]. Journal of Colloid and Interface Science,2022,623:710-722. doi: 10.1016/j.jcis.2022.05.065
    [22] SAMARI M, ZINADINI S, ZINATIZADEH A A, et al. Designing of a novel polyethersulfone (PES) ultrafiltration (UF) membrane with thermal stability and high fouling resistance using melamine-modified zirconium-based metal-organic framework (UiO-66-NH2/MOF)[J]. Separation and Purification Technology,2020,251:117010. doi: 10.1016/j.seppur.2020.117010
    [23] BUNGE M A, DAVIS A B, WEST K N, et al. Synthesis and characterization of UiO-66-NH2 metal-organic framework cotton composite textiles[J]. Industrial & Engineering Chemistry Research,2018,57(28):9151-9161.
    [24] SCHAATE A, ROY P, GODT A, et al. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals[J]. Chemistry—A European Journal,2011,17(24):6643-6651. doi: 10.1002/chem.201003211
    [25] ZHU J J, WU L B, BU Z Y, et al. Polyethyleneimine-modified UiO-66-NH2 (Zr) metal-organic frameworks: Preparation and enhanced CO2 selective adsorption[J]. ACS Omega,2019,4(2):3188-3197. doi: 10.1021/acsomega.8b02319
    [26] 卫生部卫生法制与监督司. 消毒技术规范第一分册[M]. 北京: 中华人民共和国卫生部, 2002.

    Department of Health Legislation and Supervision, Ministry of Health. The first volume of disinfection technical specifications[M]. Beijing: Ministry of Health of the People's Republic of China, 2002(in Chinese).
    [27] 金瑞, 张娜, 陈娜, 等. 吡啶-2-甲醛共价接枝UiO-66-NH2负载铁系催化剂的合成及催化乙烯齐聚性能[J]. 化学通报, 2022, 85(9): 1127-1132.

    JIN Rui, ZHANG Na, CHEN Na, et al. Synthesis and catalytic performance in ethylene oligomerization of pyridine-2-formaldehyde covalently grafted to UIO-66-NH2 supported iron catalyst[J]. Chemistry, 2022, 85(9): 1127-1132(in Chinese).
    [28] HAN Y T, LIU M, LI K Y, et al. Facile synthesis of morphology-and size-controlled zirconium metal-organic framework UiO-66: The role of hydrofluoric acid in crystallization[J]. CrystEngComm,2015,17(33):6434-6440. doi: 10.1039/C5CE00729A
    [29] RABIEE N, GHADIRI A M, ALINEZHAD V, et al. Synthesis of green benzamide-decorated UiO-66-NH2 for biomedical applications[J]. Chemosphere,2022,299:134359. doi: 10.1016/j.chemosphere.2022.134359
    [30] 曾胚羡. 基于UiO-66-NH2和聚丙烯酸钠自组装体构建双重响应载药体系的研究与应用[D]. 福州: 福州大学, 2017.

    ZENG Peixian. Application and research of double responsive drug delivery systems based on UiO-66-NH2 and sodium polyacrylate self-assemblies[D]. Fuzhou: Fuzhou University, 2017(in Chinese).
    [31] MULIK N, BOKADE V. Immobilization of HPW on UiO-66-NH2 MOF as efficient catalyst for synthesis of furfuryl ether and alkyl levulinate as biofuel[J]. Molecular Catalysis,2022,531:112689. doi: 10.1016/j.mcat.2022.112689
    [32] XU J, HE S, ZHANG H L, et al. Layered metal-organic framework/graphene nanoarchitectures for organic photosynthesis under visible light[J]. Journal of Materials Chemistry A,2015,3(48):24261-24271. doi: 10.1039/C5TA06838J
    [33] LIN Y M, QIU Z Z, LI D Z, et al. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries[J]. Energy Storage Materials,2018,11:67-74. doi: 10.1016/j.ensm.2017.06.001
    [34] CHEUNG Y H, MA K K, LEEUWEN H C V, et al. Immobilized regenerable active chlorine within a zirconium-based MOF textile composite to eliminate biological and chemical threats[J]. Journal of the American Chemical Society,2021,143(40):16777-16785. doi: 10.1021/jacs.1c08576
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  772
  • HTML全文浏览量:  392
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2022-12-05
  • 录用日期:  2022-12-22
  • 网络出版日期:  2023-01-04
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回