留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印仿海螺壳-珍珠贝壳混合设计复合材料的动态响应

齐国梁 郭章新 卫世义 武晓东 李永存 安连浩 王可

齐国梁, 郭章新, 卫世义, 等. 3D打印仿海螺壳-珍珠贝壳混合设计复合材料的动态响应[J]. 复合材料学报, 2023, 40(9): 5423-5432. doi: 10.13801/j.cnki.fhclxb.20221228.005
引用本文: 齐国梁, 郭章新, 卫世义, 等. 3D打印仿海螺壳-珍珠贝壳混合设计复合材料的动态响应[J]. 复合材料学报, 2023, 40(9): 5423-5432. doi: 10.13801/j.cnki.fhclxb.20221228.005
QI Guoliang, GUO Zhangxin, WEI Shiyi, et al. Dynamic response of composite materials designed by 3D printing imitation conch shell pearl shell hybrid design[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5423-5432. doi: 10.13801/j.cnki.fhclxb.20221228.005
Citation: QI Guoliang, GUO Zhangxin, WEI Shiyi, et al. Dynamic response of composite materials designed by 3D printing imitation conch shell pearl shell hybrid design[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5423-5432. doi: 10.13801/j.cnki.fhclxb.20221228.005

3D打印仿海螺壳-珍珠贝壳混合设计复合材料的动态响应

doi: 10.13801/j.cnki.fhclxb.20221228.005
基金项目: 山西省基础研究计划(202103021224111;20210302123126);国家自然科学基金青年项目(11602160);山西省 “1331工程” 重点创新团队项目
详细信息
    通讯作者:

    郭章新,博士,副教授,硕士生导师,研究方向为复合材料及其结构的力学性能分析 E-mail: woxintanran215@163.com

  • 中图分类号: TB330.1

Dynamic response of composite materials designed by 3D printing imitation conch shell pearl shell hybrid design

Funds: Fundamental Research Program of Shanxi Province (202103021224111; 20210302123126);National Natural Science Foundation of China (11602160); "1331 Project" Key Innovation Teams of Shanxi Province
  • 摘要: 通过静态三点弯和动态三点弯实验,研究了基于海螺壳和珍珠贝壳层的仿生混合设计复合材料在不同应变率下海螺壳单元倾斜角度对试样断裂行为的影响。使用软相和硬相两种基体材料通过3D打印技术制备4组试样,基于准静态和动态三点弯冲击实验,得到了4组试样的载荷-位移曲线和起裂功等参数。结果表明:不同应变率下结构发生不同的裂纹偏转路径,在较低的应变率下,45°样品强度高,吸能效果好,30°样品断裂韧性较好;在较高应变率下,45°样品强度与韧性较好。最后,通过落锤实验,研究了不同冲击速度对混合设计结构板破坏的影响,得到了临界破坏速度及两种破坏模式。落锤实验表明,当冲击速度达到1.8 m/s时,继续增加冲击速度至2.0 m/s对仿海螺壳-珍珠贝壳结构的动态响应无明显影响。结构起裂前吸收的能量和起裂后吸收的能量在总吸能中的占比趋于稳定。

     

  • 图  1  仿海螺壳-珍珠贝壳混合设计结构图

    Figure  1.  Imitation conch shell pearl shell mixed design structure diagram

    l1—Imitation conch shell structure height; l2—Imitation shell structure height

    图  2  准静态三点弯实验装置图

    Figure  2.  Schematic diagram of quasi-static three-point bending test

    L—Length; W—Width; H—Height; d—Notch width; h—Notch length; S—Span

    图  3  海螺壳单元倾斜角度示意图

    Figure  3.  Schematic diagram of inclination angle of conch shell unit

    γ—Inclination angle

    图  4  仿海螺壳-珍珠贝壳混合设计结构复合材料准静态三点弯载荷-位移曲线

    Figure  4.  Quasi-static three-point bending load displacement curve of composite structure with hybrid design of sea snail shell and pearl shell

    图  5  仿海螺壳-珍珠贝壳混合设计结构复合材料准静态三点弯曲裂纹扩展图

    Figure  5.  Quasi static three-point bending crack propagation diagram of composite materials with hybrid design of sea snail shell and pearl shell

    图  6  仿海螺壳-珍珠贝壳混合设计结构复合材料临界挠度值Δct和断裂韧性KIct

    Figure  6.  Critical deflection value Δct and fracture toughness KIct of composite materials with hybrid design of sea snail shell and pearl shell

    图  7  仿海螺壳-珍珠贝壳混合设计结构复合材料能量吸收

    Figure  7.  Energy absorption of composite materials with hybrid design of sea snail shell and pearl shell

    图  8  裂纹的基本类型

    Figure  8.  Basic types of cracks

    图  9  仿海螺壳-珍珠贝壳混合设计结构复合材料45°试样裂纹扩展图

    Figure  9.  Crack growth diagram of 45° specimen of composite materials with hybrid design of sea snail shell and pearl shell

    图  10  海螺壳结构第二层裂纹扩展示意图

    Figure  10.  Schematic diagram of crack propagation in the second layer of conch shell structure

    图  11  改进的分离式Hopkinson杆系统原理图[21]

    Figure  11.  Schematic diagram of improved split Hopkinson rod system[21]

    图  12  仿海螺壳-珍珠贝壳混合设计结构复合材料60°试件的载荷-位移曲线

    Figure  12.  Load-displacement curve of 60° composite specimen with hybrid design of sea snail shell and pearl shell

    δt—Crack initiation time; U—Crack initiation work; F—Force; δ—Time

    图  13  不同海螺壳单元倾斜角度混合设计试样载荷-位移曲线

    Figure  13.  Load-displacement curves of mixed design specimens with different inclination angles of conch shell elements

    图  14  仿海螺壳-珍珠贝壳混合设计结构复合材料起裂功和起裂时间

    Figure  14.  Initiation work and initiation time of composite materials with hybrid design of sea snail shell and pearl shell

    图  15  不同海螺壳单元倾斜角度混合设计试样裂纹图

    Figure  15.  Crack diagram of mixed design specimen with different inclination angles of conch shell elements

    图  16  落锤测试机及其原理图

    Figure  16.  Drop hammer tester and its schematic diagram

    图  17  仿海螺壳-珍珠贝壳混合设计结构复合材料落锤实验样品

    Figure  17.  Drop hammer test sample of composite materials with hybrid design of sea snail shell and pearl shell

    图  18  不同冲击速度下Design-1损伤图

    Figure  18.  Damage diagram of Design-1 at different impact speeds

    图  19  仿海螺壳-珍珠贝壳混合设计结构复合材料不同冲击速度下载荷-位移曲线

    Figure  19.  Load-displacement curves under different impact speeds of composite materials with hybrid design of sea snail shell and pearl shell

    图  20  仿海螺壳-珍珠贝壳混合设计结构复合材料不同冲击速度下比吸能

    Figure  20.  Specific energy absorption at different impact speeds of composite materials with hybrid design of sea snail shell and pearl shell

    Ef—Specific absorbed energy after cracking; Ep—Specific absorption energy before cracking

    图  21  仿海螺壳-珍珠贝壳混合设计结构复合材料吸能效率随无量纲冲量变化的规律

    Figure  21.  Law of energy absorption efficiency changing with non dimensional impulse of composite materials with hybrid design of sea snail shell and pearl shell

    表  1  不同冲击速度下海螺壳结构基本单元倾斜角度为45°的仿海螺壳-珍珠贝壳复合结构(Design-1)和单一设计的珍珠贝壳层砖泥结构(Design-2)落锤测试结果

    Table  1.   Drop hammer test results of the sea snail shell like pearl shell composite structure (Design-1) and the single designed pearl shell layer brick mud structure (Design-2) with the basic unit inclination angle of 45° under different impact velocities

    NumberComposite typeImpact velocity/
    (m·s−1)
    Max load/
    kN
    Max deflection/
    mm
    Residual velocity/
    (m·s−1)
    Perforated?Critical impact
    energy/J
    Design-1 1.3 0.752±0.1 8.9±0.4 0.0 No
    1.5 0.776±0.1 10.2±0.5 0.0 No
    1.6 0.794±0.1 14.6±1.5 0.08±0.1 Yes 6.1
    1.7 0.825±0.1 13.9±1.1 0.25±0.1 Yes
    1.8 0.822±0.2 12.8±1.3 0.42±0.1 Yes
    2.0 0.836±0.1 12.2±0.8 0.55±0.2 Yes
    Design-2 1.3 0.741±0.1 9.8±0.3 0.0 No
    1.5 0.762±0.1 10.9±0.4 0.09±0.1 Yes 5.4
    2.0 0.818±0.1 8.9±0.5 0.61±0.3 Yes
    下载: 导出CSV
  • [1] ZHOU B L. The biomimetic study of composite materials[J]. JOM,1994,46(2):57-62. doi: 10.1007/BF03222561
    [2] ZHANG P, HEYNE M A, TO A C. Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing[J]. Journal of the Mechanics and Physics of Solids,2015,83:285-300. doi: 10.1016/j.jmps.2015.06.015
    [3] 王振兴, 原梅妮, 李立州, 等. 贝壳珍珠母增韧机理研究进展[J]. 材料导报, 2015, 29(15): 98-102.

    WANG Zhenxing, YUAN Meini, LI Lizhou, et al. Research progress of toughening mechanisms of nacre shell[J]. Materials Review, 2015, 29(15): 98-102(in Chinese).
    [4] 马骁勇, 梁海弋, 王联凤. 三维打印贝壳仿生结构的力学性能[J]. 科学通报, 2016(7): 728-734.

    MA Xiaoyong, LIANG Haiyi, WANG Lianfeng. Multi-materials 3D printing application of shell biomimctic structure[J]. Chinese Science Bulletin, 2016, 61(7): 728-734(in Chinese).
    [5] 邵浩彬, 朱军, 周琦, 等. 三角帆蚌贝壳的微结构及尺寸变化特征[J]. 复合材料学报, 2019, 36(10):2398-2406.

    SHAO Haobin, ZHU Jun, ZHOU Qi, et al. Characteristics of microstructure and size change of the shellof Hyriopsis cumingii[J]. Acta Materiae Compositae Sinica,2019,36(10):2398-2406(in Chinese).
    [6] LI H Z, SHEN J H, WEI Q M, et al. Dynamic self-strengthening of a bio-nanostructured armor-conch shell[J]. Materials Science and Engineering: C,2019,103:109820. doi: 10.1016/j.msec.2019.109820
    [7] HOU D F, ZHOU G S, ZHENG M. Conch shell structure and its effect on mechanical behaviors[J]. Biomaterials,2004,25(4):751-756. doi: 10.1016/S0142-9612(03)00555-6
    [8] VAN L T, GHAZLAN A, NGO T, et al. Performance of a bio-mimetic 3D printed conch-like structure under quasi-static loading[J]. Composite Structures,2020,246:112433. doi: 10.1016/j.compstruct.2020.112433
    [9] MENIG R, MEYERS M H, MEYERS M A, et al. Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells[J]. Materials Science and Engineering: A,2001,297(1-2):203-211. doi: 10.1016/S0921-5093(00)01228-4
    [10] KAMAT S, SU X, BALLARINI R, et al. Structural basis for the fracture toughness of the shell of the conch Strombus gigas[J]. Nature,2000,405(6790):1036-1040. doi: 10.1038/35016535
    [11] KUHN-SPEARING L T, KESSLER H, CHATEAU E, et al. Fracture mechanisms of the Strombus gigas conch shell: Implications for the design of brittle laminates[J]. Journal of Materials Science,1996,31(24):6583-6594. doi: 10.1007/BF00356266
    [12] GU G X, TAKAFFOLI M, HSIEH A J, et al. Biomimetic additive manufactured polymer composites for improved impact resistance[J]. Extreme Mechanics Letters,2016,9:317-323. doi: 10.1016/j.eml.2016.09.006
    [13] GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites[J]. Advanced Materials,2017,29(28):1700060. doi: 10.1002/adma.201700060
    [14] JIA Z A, YU Y, HOU S Y, et al. Biomimetic architected materials with improved dynamic performance[J]. Journal of the Mechanics and Physics of Solids,2019,125:178-197. doi: 10.1016/j.jmps.2018.12.015
    [15] JIA Z A, YU Y, WANG L F. Learning from nature: Use material architecture to break the performance tradeoffs[J]. Materials & Design,2019,168:107650.
    [16] BARTHELAT F, TANG H, ZAVATTIERI P D, et al. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure[J]. Journal of the Mechanics and Physics of Solids,2007,55(2):306-337. doi: 10.1016/j.jmps.2006.07.007
    [17] BRUET B J F, SONG J H, BOYCE M C, et al. Materials design principles of ancient fish armour[J]. Nature Materials,2008,7(9):748-756. doi: 10.1038/nmat2231
    [18] WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: A formidable damage-tolerant biological hammer[J]. Science,2012,336(6086):1275-1280. doi: 10.1126/science.1218764
    [19] WANG B, YANG W, SHERMAN V R, et al. Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales[J]. Acta Biomaterialia,2016,41:60-74. doi: 10.1016/j.actbio.2016.05.028
    [20] WU X D, MENG X S, ZHANG H G. An experimental investigation of the dynamic fracture behavior of 3D printed nacre-like composites[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,112:104068. doi: 10.1016/j.jmbbm.2020.104068
    [21] ŁODYGOWSKI T, RUSINEK A. Constitutive relations under impact loadings[M]. Udine: CISM International Centre for Mechanical Sciences, 2014.
    [22] 马小敏, 李世强, 李鑫, 等. 编织Kevlar/Epoxy复合材料层合板在冲击荷载下的动态响应[J]. 爆炸与冲击, 2016, 36(2):170-176. doi: 10.11883/1001-1455(2016)02-0170-07

    MA Xiaomin, LI Shiqiang, LI Xin, et al. Dynamic response of woven Kevlar/Epoxy composite laminates under impact loading[J]. Explosion and Shock Waves,2016,36(2):170-176(in Chinese). doi: 10.11883/1001-1455(2016)02-0170-07
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  754
  • HTML全文浏览量:  360
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-30
  • 修回日期:  2022-12-02
  • 录用日期:  2022-12-09
  • 网络出版日期:  2022-12-29
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回