留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维素纳米晶须水泥基复合材料试验及分子动力学模拟

樊其昌 王展鹏 孟雪 周立宇 樊亮 孟丹

樊其昌, 王展鹏, 孟雪, 等. 纤维素纳米晶须水泥基复合材料试验及分子动力学模拟[J]. 复合材料学报, 2023, 40(9): 5315-5329. doi: 10.13801/j.cnki.fhclxb.20221226.001
引用本文: 樊其昌, 王展鹏, 孟雪, 等. 纤维素纳米晶须水泥基复合材料试验及分子动力学模拟[J]. 复合材料学报, 2023, 40(9): 5315-5329. doi: 10.13801/j.cnki.fhclxb.20221226.001
FAN Qichang, WANG Zhanpeng, MENG Xue, et al. Experiment and molecular dynamics simulation of cellulose nanocrystals cement-based composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5315-5329. doi: 10.13801/j.cnki.fhclxb.20221226.001
Citation: FAN Qichang, WANG Zhanpeng, MENG Xue, et al. Experiment and molecular dynamics simulation of cellulose nanocrystals cement-based composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5315-5329. doi: 10.13801/j.cnki.fhclxb.20221226.001

纤维素纳米晶须水泥基复合材料试验及分子动力学模拟

doi: 10.13801/j.cnki.fhclxb.20221226.001
基金项目: 国家自然科学基金(51808310);青岛农业大学高层次人才科研基金(1114324)
详细信息
    通讯作者:

    孟丹,博士,副教授,研究方向为水泥基复合材料、装配式技术、分子动力学模拟 E-mail:md1101@163.com

  • 中图分类号: TU525;TB333

Experiment and molecular dynamics simulation of cellulose nanocrystals cement-based composites

Funds: National Natural Science Foundation of China (51808310); High-level Talent Scientific Research Fund Project of Qingdao Agricultural University (1114324)
  • 摘要: 探究纤维素纳米晶须(CNC)及其包覆聚乙烯(PE)纤维对砂浆性能的影响。采用XRD分析水化产物、核磁共振技术(NMR)测量试块孔隙率、SEM表征纤维水泥基复合材料界面、EDS测量水化硅酸钙(C-S-H)的钙硅比,使用分子动力学模拟(MD)分析两种官能化CNC和水泥基体间的吸附能、动力学特性和回转半径。 结果表明:CNC促进了水泥水化且增强了水化产物致密性,限制了基体的孔隙发育,提升了砂浆力学性能;不同官能团与水泥水化物之间的吸附存在差别,影响CNC的增强效果;CNC涂层可以增强纤维与水泥基体的界面粘结,提高复合材料协同工作性能。

     

  • 图  1  纤维素纳米晶须(CNC)、纤维材料及CNC包覆纤维的制备:(a) CNC凝胶;(b) 聚乙烯(PE);(c) 聚乙烯醇(PVA);(d) CNC纤维

    Figure  1.  Cellulose nanocrystal (CNC), fibers and fabrication of the CNC coated fiber: (a) CNC gel; (b) Polyethylene (PE); (c) Polyvinyl alcohol (PVA); (d) CNC fiber

    图  2  流动性结果:(a) CNC;(b) 纤维

    Figure  2.  Fluidity results: (a) CNC; (b) Fiber

    图  3  泥浆的XRD图谱 (a)、溶解峰 (b) 和水化热 (c) 结果;CNC-C (d)、CNC-H (e)、PE (f)、PVA (g) 和CNC纤维 (h) 的砂浆抗折强度

    Figure  3.  XRD patterns (a), dissolution peak (b) and hydration heat (c) of mortar; Flexural strength of CNC-C (d), CNC-H (e), PE (f), PVA (g) and CNC fiber (h)

    CH—Calcium hydroxide; C3S—Tricalcium silicate; C2S—Dicalcium silicate

    图  4  CNC-C (a)、CNC-H (b) 砂浆的3天抗压强度;CNC-C (a)、CNC-H (b)、PE (c)、PVA (d) 和CNC纤维 (e) 的28天抗压强度及不同掺量的CNC-C和CNC-H砂浆 T2图谱 (f)

    Figure  4.  Compressive strength of CNC-C (a), CNC-H (b) mortar of 3 days; Compressive strength of CNC-C (a), CNC-H (b), PE (c), PVA (d) and CNC fiber (e) mortar of 28 days and T2 distribution spectra of different dosages CNC-C and CNC-H mortar (f)

    图  5  不同掺量CNC-C和CNC-H砂浆的核磁成像

    Figure  5.  NMR imaging of different dosages CNC-C and CNC-H mortar

    图  6  CNC砂浆的控制组 ((a), (c)) 和CNC-C ((b), (d)) 的SEM图像;控制组 (e)、CNC-H (f)、CNC-C (g) 的EDS分析

    Figure  6.  SEM images of control ((a), (c)), CNC-C ((b), (d)); EDS analysis of control (e), CNC-H (f), CNC-C (g)

    图  7  纤维及砂浆的SEM图像:(a) PE;(b) CNC 纤维;(c) PE砂浆;(d) CNC纤维砂浆

    Figure  7.  SEM images of fibers and mortar: (a) PE; (b) CNC fiber; (c) PE mortar; (d) CNC fiber mortar

    图  8  CNC分子结构图:(a) CNC-C;(b) CNC-H

    Figure  8.  Molecular structure of CNC: (a) CNC-C; (b) CNC-H

    图  9  CNC/C-S-H计算单元:(a) CNC-C;(b) CNC-H

    Figure  9.  Calculation unit of CNC/C-S-H: (a) CNC-C; (b) CNC-H

    图  10  CNC-C/C-S-H (a) 和CNC-H/C-S-H (b) 界面原子的径向分布函数(RDF);(c) CNC-C和CNC-H的时间相关函数(TCF)曲线

    Figure  10.  Radial of function(RDF) of the interface atoms of CNC-C (a) and CNC-H (b); (c) Time correlation function (TCF) of CNC-C and CNC-H results of CNC/C-S-H interface

    图  11  均方位移MSD计算结果:(a) 界面原子;(b) 分子

    Figure  11.  Mean square displacement MSD results: (a) Interface atoms; (b) Molecules

    图  12  CNC分子回转半径Rg (a) 和浓度剖面 (b)

    Figure  12.  Turning radius Rg (a) and concentration profile (b) results of CNC

    表  1  PE及PVA纤维的物理及力学性能指标

    Table  1.   Physical and mechanical properties of PE and PVA fibers

    FiberLength/
    mm
    Diameter/
    μm
    Elastic modulus/
    GPa
    Tensile strength/
    MPa
    Density/
    (kg·m−3)
    PE9241203000 970
    PVA920 4016001300
    下载: 导出CSV

    表  2  普通硅酸盐水泥化学成分(P·O 42.5)

    Table  2.   Composition of ordinary portland cement (P·O 42.5)

    CompositionSiO2Al2O3Fe2O3CaOMgOLoss
    Proportion
    /%
    21.445.953.0561.423.974.35
    下载: 导出CSV

    表  3  不同实验组砂浆质量成分

    Table  3.   Mass composition of different experimental groups g

    NotationSandCementWaterPlain fiberCNC-CCNC-HCNC-C coated

    polyethylene
    CNC-H coated
    polyethylene
    A1350450247.500000
    C-0.011350450247.500.045000
    C-0.051350450247.500.225000
    C-0.101350450247.500.450000
    C-0.151350450247.500.675000
    C-0.201350450247.500.900000
    H-0.011350450247.5000.04500
    H-0.051350450247.5000.22500
    H-0.101350450247.5000.45000
    H-0.151350450247.5000.67500
    H-0.201350450247.5000.90000
    PE-0.101350450247.50.7450000
    PE-0.201350450247.51.4900000
    PE-0.301350450247.52.2350000
    PE-0.401350450247.52.9800000
    PE-0.501350450247.53.7250000
    PVA-0.101350450247.50.9980000
    PVA-0.201350450247.51.9970000
    PVA-0.301350450247.52.9950000
    PVA-0.401350450247.53.9940000
    PVA-0.501350450247.54.9920000
    PEC-0.301350450247.50002.2350
    PEH-0.301350450247.500002.235
    Notes: CNC-C—Carboxylated CNC; CNC-H—Hydroxylated CNC; A—Control mortar sample; C—CNC-C mortar sample; H—CNC-H mortar sample; PEC—CNC-C coating fiber mortar sample; PEH—CNC-H coating fiber sample. Additionally, the number means the dosage of enhancement material. Such as C-0.01—Ratio of CNC-C is 0.01%; PE-0.1—Addition of PE fiber is 0.1%.
    下载: 导出CSV
  • [1] MIGUEL M, GONZALO M, OSMAN G, et al. Recycling polypropylene and polyethylene wastes in production of polyester based polymer mortars[J]. Construction and Building Materials,2021,274:121487. doi: 10.1016/j.conbuildmat.2020.121487
    [2] 叶卓然, 罗靓, 潘海燕, 等. 超高分子量聚乙烯纤维及其复合材料的研究现状与分析[J]. 复合材料学报, 2022, 39(9):4286-4309. doi: 10.13801/j.cnki.fhclxb.20220803.002

    YE Z R, LUO L, PAN H Y, et al. Research status and analysis of ultra-high molecular weight polyethylene fiber and its composites[J]. Acta Materiae Compositae Sinica,2022,39(9):4286-4309(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220803.002
    [3] VANIN D, ANDRADE V, FIORENTIN T, et al. Claudimir antonio carminatti, hazim Ali Al-Qureshi, cement pastes modified by cellulose nanocrystals: A dynamic moduli evolution assessment by the impulse excitation technique[J]. Materials Chemistry and Physics,2020,239:122038.
    [4] LEE H, KIM W. Long-term durability evaluation of fiber-reinforced ECC using wood-based cellulose nanocrystals[J]. Construction and Building Materials,2020,238:117754. doi: 10.1016/j.conbuildmat.2019.117754
    [5] LEE H, KIM S. A study on the drying shrinkage and mechanical properties of fiber reinforced cement compo-sites using cellulose nanocrystals[J]. International Jour-nal of Concrete Structures and Materials,2019,13(1):1-11. doi: 10.1186/s40069-018-0311-2
    [6] MONTES F, FU T, YOUNGBLOOD J P, et al. Rheological impact of using cellulose nanocrystals (CNC) in cement pastes[J]. Construction and Building Materials,2020,235:117497-117506. doi: 10.1016/j.conbuildmat.2019.117497
    [7] FU T, MONTES F, SURANENI P. The influence of cellulose nanocrystals on the hydration and flexural strength of portland cement pastes[J]. Polymers,2017,9:1-16. doi: 10.3390/polym9010001
    [8] DANUTA B H, MONIKA S C, MONIKA J H, et al. Effect of cellulose nanofibrils and nanocrystals on physical properties of concrete[J]. Construction and Building Materials,2019,223:1-11. doi: 10.1016/j.conbuildmat.2019.06.145
    [9] ANJU T, DHAMODHARAN R. Surface modified microcrystalline cellulose from cotton as a potential mineral admixture in cement mortar composite[J]. Cement and Concrete Composites,2016,74:147-153. doi: 10.1016/j.cemconcomp.2016.09.003
    [10] LU Z, YU J, YAO J, et al. Experimental and molecular modeling of polyethylene fiber/cement interface strengthened by graphene oxide[J]. Cement and Concrete Composites,2020,112:103676. doi: 10.1016/j.cemconcomp.2020.103676
    [11] ALKHATEB H, AL-OSTAZ A, LI X. Materials genome for graphene-cement nanocomposites[J]. Journal of Nanomechanics and Micromechanics, 2013, 3(3): 67-77.
    [12] HOU D, LU Z, LI X, et al. Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms[J]. Carbon,2017,115:188-208. doi: 10.1016/j.carbon.2017.01.013
    [13] 中国国家标准化管理委员会. 水泥胶砂流动度测定方法: GB/T 2419—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for fluidity of cement mortar: GB/T 2419—2005[S]. Beijing: China Standards Press, 2021(in Chinese).
    [14] 中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People’s Republic of China. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: China Standards Press, 2021(in Chinese).
    [15] ZHANG Q, SUN H, LIU W, et al. Effect of rGO on the mechanical strength, hydration and micromorphology of cement incorporated silica fume[J]. Construction and Building Materials,2021,300:124325. doi: 10.1016/j.conbuildmat.2021.124325
    [16] CAO Y, ZAVATERRI P, YOUNGBLOOD J, et al. The influence of cellulose nanocrystal additions on the performance of cement paste[J]. Cement and Concrete Compo-sites,2015,56:73-83. doi: 10.1016/j.cemconcomp.2014.11.008
    [17] CAO Y, TIAN N, BAHR D, et al. The influence of cellulose nanocrystals on the microstructure of cement paste[J]. Cement and Concrete Composites,2016,74:164-173. doi: 10.1016/j.cemconcomp.2016.09.008
    [18] CAO Y, ZAVATTIERI P, YOUNGBLOOD J, et al. The relationship between cellulose nanocrystal dispersion and strength[J]. Construction and Building Materials,2016,119:71-79. doi: 10.1016/j.conbuildmat.2016.03.077
    [19] 郑逢时. UHMWPE纤维表面处理及其水泥砂浆性能研究[D]. 西安: 长安大学, 2014.

    ZHENG F S. Surface treatment of UHMWPE fiber and its performance in cement mortar[D]. Xi'an: Chang'an University, 2014(in Chinese).
    [20] HE Y. Effect of C/S ratio on morphology and structure of hydrothermally synthesized calcium silicate hydrate[J]. Journal of Wuhan University of Technology (Materials Science Edition),2011,26(4):770-773. doi: 10.1007/s11595-011-0308-z
    [21] 何威, 许吉航, 焦志男. 少层石墨烯对水泥净浆流动性能及力学性能的影响[J]. 复合材料学报, 2021, 39(11):5637-5649. doi: 10.13801/j.cnki.fhclxb.20211112.001

    HE W, XU J, JIAO Z. Effect of few-layer graphene on the fluidity and mechanical properties of cement paste[J]. Acta Materiae Compositae Sinica,2021,39(11):5637-5649(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211112.001
    [22] 覃丽芳, 曲波, 史才军, 等. 钙硅比对铝硅酸盐凝胶形成与特性的影响[J]. 材料导报, 2020, 34(12):12057-12063. doi: 10.11896/cldb.19070122

    QIN L F, QU B, SHI C J, et al. Effect of Ca/Si ratio on the formation and characteristics of synthetic aluminosilicate hydrate gels[J]. Materials Report,2020,34(12):12057-12063(in Chinese). doi: 10.11896/cldb.19070122
    [23] 管申. 纳米材料对水泥基材料水化和性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    GUAN S. The effect of nanomaterials on the hydration and properties of cement-based materials[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [24] FAN Q, MENG X, LI Z, et al. Experiment and molecular dynamics simulation of functionalized cellulose nanocrystals as reinforcement in cement composites[J]. Construction and Building Materials,2022,341:27879.
    [25] FAN Q, WANG Z, MENG X, et al. Multi-scale analysis of the strengthening mechanism of functionalized graphene as reinforcement in cement composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,651:129729. doi: 10.1016/j.colsurfa.2022.129729
    [26] ZHAO L, ZHU S, WU H, et al. The improved resistance against the degradation of sisal fibers under the environment of cement hydration by surface coating of graphene oxide (GO) based membranes[J]. Construction and Building Materials,2021,305:124694. doi: 10.1016/j.conbuildmat.2021.124694
    [27] 吴畏, 王统伟, 汪德成, 等. 基于Gaussian和LAMMPS模拟的氧化钙脱除氯化氢机制[J]. 东南大学学报(自然科学版), 2020, 50(1):1-10. doi: 10.3969/j.issn.1001-0505.2020.01.001

    WU W, WANG T W, WANG D C, et al. Mechanism of HCl removed by CaO based on Gaussian and LAMMPS simulation[J]. Journal of Southeast University (Natural Science Edition),2020,50(1):1-10(in Chinese). doi: 10.3969/j.issn.1001-0505.2020.01.001
    [28] ZHANG Y, YANG T, JIA Y. Molecular dynamics study on the weakening effect of moisture content on graphene oxide reinforced cement composite[J]. Chemical Physics Letters, 2018, 708: 177-182.
    [29] SANCHEZ F, ZHANG L. Interaction energies, structure, and dynamics at functionalized graphitic structure-liquid phase interfaces in an aqueous calcium sulfate solution by molecular dynamics simulation[J]. Carbon, 2010, 48: 1210-1223.
    [30] HOU D, YANG Q, WANG P. Unraveling disadhesion mechanism of epoxy/CSH interface under aggressive conditions[J]. Cement and Concrete Research, 2021, 146: 106489.
    [31] 杨进波, 赵钲洋, 尹航. 基于分子动力学的C-S-H凝胶性能研究[J]. 材料导报, 2021, 35(5):5095-5101. doi: 10.11896/cldb.19120140

    YANG J B, ZHAO Z Y, YIN H. Research development on molecular dynamics of C-S-H gels[J]. Material Report,2021,35(5):5095-5101(in Chinese). doi: 10.11896/cldb.19120140
    [32] SANCHEZ F, ZHANG L. Molecular dynamics modeling of the interface between surface-functionalized graphitic structures and calcium-silicate-hydrate: Interaction energies, structure, and dynamics[J]. Journal of Colloid and Interface Science,2008,323(2):349-358. doi: 10.1016/j.jcis.2008.04.023
    [33] RAMASAMY J, AMANULLAH M. Nanocellulose for oil and gas field drilling and cementing applications[J]. Journal of Petroleum Science and Engineering,2020,184:106292. doi: 10.1016/j.petrol.2019.106292
    [34] 曾靖. 水化硅酸钙/氧化石墨烯复合材料力学性能的分子动力学模拟[D]. 重庆: 重庆大学, 2015.

    ZENG J. Molecular dynamics simulation of mechanical properties of calcium-silicate-hydrate/graphene oxide composites [D]. Chongqing: Chongqing University, 2015(in Chinese).
    [35] HOU D, YU J, WANG P. Molecular dynamics modeling of the structure, dynamics, energetics and mechanical pro-perties of cement-polymer nanocomposite[J]. Composite Pare B: Engineering, 2019, 162: 433-444.
    [36] 杨铁军, 魏金龙, 马冰洋, 等. 水分在托贝莫来石中运动特性的分子动力学模拟研究[J]. 硅酸盐通报, 2020, 39(4):1085-1091. doi: 10.16552/j.cnki.issn1001-1625.2020.04.011

    YANG T J, WEI J L, MA B Y, et al. Molecular dynamics study of the motion characteristics of water in tobermorite[J]. Bulletin of the Chinese Ceramic Society,2020,39(4):1085-1091(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2020.04.011
    [37] ZHAO H, WANG Y, YANG Y, et al. Effect of hydrophobic groups on the adsorption conformation of modified polycarboxylate superplasticizer investigated by molecular dynamics simulation[J]. Applied Surface Science,2017,407:8-15. doi: 10.1016/j.apsusc.2017.02.132
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  475
  • HTML全文浏览量:  120
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 修回日期:  2022-12-03
  • 录用日期:  2022-12-07
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回