留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一步法制备自相似结构超疏水涂层及混凝土表面应用性能

鲁浈浈 张应轩 唐超 葛倩倩 陈悦

鲁浈浈, 张应轩, 唐超, 等. 一步法制备自相似结构超疏水涂层及混凝土表面应用性能[J]. 复合材料学报, 2023, 40(10): 5692-5705. doi: 10.13801/j.cnki.fhclxb.20221223.004
引用本文: 鲁浈浈, 张应轩, 唐超, 等. 一步法制备自相似结构超疏水涂层及混凝土表面应用性能[J]. 复合材料学报, 2023, 40(10): 5692-5705. doi: 10.13801/j.cnki.fhclxb.20221223.004
LU Zhenzhen, ZHANG Yingxuan, TANG Chao, et al. Preparation of superhydrophobic coating with self-similar structure by one-step menthod and application on concrete surface[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5692-5705. doi: 10.13801/j.cnki.fhclxb.20221223.004
Citation: LU Zhenzhen, ZHANG Yingxuan, TANG Chao, et al. Preparation of superhydrophobic coating with self-similar structure by one-step menthod and application on concrete surface[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5692-5705. doi: 10.13801/j.cnki.fhclxb.20221223.004

一步法制备自相似结构超疏水涂层及混凝土表面应用性能

doi: 10.13801/j.cnki.fhclxb.20221223.004
基金项目: 重庆市自然科学基金面上项目(CSTB2022 NSCQ-MSX0779;cstc2019 jcyj-msxmX0556);重庆市研究生科研创新项目(CYS22395)
详细信息
    通讯作者:

    陈悦,博士,副教授,博士生导师,研究方向为超疏水自清洁材料 E-mail: 903324310@qq.com

  • 中图分类号: TB34;TB17

Preparation of superhydrophobic coating with self-similar structure by one-step menthod and application on concrete surface

Funds: General Program of Chongqing Natural Science Foundation (CSTB2022 NSCQ-MSX0779; cstc2019 jcyj-msxmX0556); The Scientific and Technological Research Program of Chongqing Municipal Education Commission (CYS22395)
  • 摘要: 探寻一种简单方法制备具有自修复性能的环氧树脂(EP)-硅酮胶-SiO2超疏水复合涂层,并且能够涂覆于类似于混凝土等结构物表面,该涂层在受到化学及机械破坏的情况下,可以实现自修复。通过简单的一步法在混凝土粗糙结构表面制备一种具有自修复性能的EP-硅酮胶-SiO2超疏水复合涂层,具体步骤为将EP、高分子中性硅酮胶和纳米SiO2等材料溶解于乙醇溶液,经8 h磁力搅拌和20 min超声分散后得到超疏水涂层溶液,采用喷涂法在混凝土表面成功制备具有自修复性能的多层相似结构超疏水涂层。当EP含量为2wt%,高分子中性硅酮胶含量为3wt%,纳米SiO2含量为3wt%时涂层疏水性能最佳,此时,接触角(CA)为156°±1.2°,滚动角(SA)为6°±0.8°。涂层在2.66 kPa的压强下可以经受8 m磨损(1.7 μm砂纸),在盐性环境(2 mol/L NaCl溶液)、酸性环境(pH=3,醋酸)中腐蚀8 h仍保持超疏水性;可承受碱性破坏(pH=12,NaOH溶液)-自修复循环8次,机械破坏-自修复可循环4次;同时涂层展现出优异的自清洁及防水性能。力学及环境腐蚀破坏实验表明涂层的自相似结构可以保证上层被破坏后由下层(具有相同的微纳米粗糙结构)来保持超疏水性;损坏-修复实验表明涂层经过加热可以使高分子中性硅酮胶带动涂层内部低表面能分子及纳米SiO2发生迁移而实现涂层的修复。该涂层简单的制备方法、良好的耐机械磨损性及优异的自修复性,为超疏水涂层的实际应用提供了可能。

     

  • 图  1  环氧树脂(EP)-硅酮胶-SiO2超疏水复合涂层制备流程图

    Figure  1.  Flow chart of epoxy resin (EP)-silicone sealant-SiO2 superhydrophobic composite coating preparation

    图  2  EP-硅酮胶-SiO2超疏水复合涂层表面的不同放大尺寸图

    Figure  2.  Different enlarged dimensions of the EP-silicone sealant-SiO2 superhydrophobic composite coating surface

    图  3  加热前后的EP-硅酮胶-SiO2超疏水复合涂层的SEM图像

    Figure  3.  SEM images of EP-silicone sealant-SiO2 superhydrophobic composite coating before and after heating

    图  4  加热前后EP-硅酮胶-SiO2超疏水复合涂层的红外光谱

    Figure  4.  Infrared spectra of EP-silicone sealant-SiO2 superhydrophobic composite coating before and after heating

    图  5  EP-硅酮胶-SiO2超疏水复合涂层混凝土试样的接触角(CA)和滚动角(SA)随磨损次数的变化

    Figure  5.  Variation of contact angle (CA) and slid angle (SA) with abrasion cycles for concrete specimens with EP-silicone sealant-SiO2 superhydrophobic composite coating

    图  6  EP-硅酮胶-SiO2 超疏水复合涂层分别在盐溶液(NaCl) (a)、酸性溶液(乙酸,pH=3) (b) 和碱性溶液(NaOH,pH=12) (c) 作用下CA和SA变化曲线

    Figure  6.  CA and SA change curves under the action of salt solution (NaCl) (a), acidic solution (acetic acid, pH=3) (b) and alkaline solution (NaOH, pH=12) (c) of EP-silicone sealant-SiO2 superhydrophobic composite coating

    图  7  EP-硅酮胶-SiO2 超疏水复合涂层碱损伤-加热修复的循环次数 (a)、碱性(pH=12)溶液破坏后的SEM图像 (b) 和加热恢复后的SEM图像 (c)

    Figure  7.  Number of cycles of alkali damage and heating repair (a), SEM image after damage by alkaline (pH=12) solution (b) and SEM image after heating recovery (c) of EP-silicone sealant-SiO2 superhydrophobic composite coating

    图  8  EP-硅酮胶-SiO2超疏水复合涂层砂纸摩擦损伤修复涂层的循环次数 (a)、10 m砂纸摩擦破坏后的SEM图像 (b)、加热恢复后的SEM图像 (c)

    Figure  8.  Cycle times of sandpaper friction damage and repair (a), SEM image of 10 m abrasive paper after friction damage (b), and SEM image after heating recovery (c) of EP-silicone sealant-SiO2 superhydrophobic composite coating

    图  9  EP-硅酮胶-SiO2超疏水复合涂层自修复机制

    Figure  9.  Self-repair mechanism of EP-silicone sealant-SiO2 superhydrophobic composite coating

    图  10  ((a)~(d)) 涂有EP-硅酮胶-SiO2超疏水复合涂层混凝土自清洁照片及模拟图;((e)~(h)) 普通混凝土清洁照片及模拟图

    Figure  10.  ((a)-(d)) Self-cleaning photos and simulations of concrete coated with EP-silicone sealant-SiO2 superhydrophobic composite coating; ((e)-(h)) Cleaning photos and simulations of ordinary concrete

    θ—Angle of slope

    图  11  混凝土表面EP-硅酮胶-SiO2超疏水复合涂层的吸水率 (a) 和吸水速率 (b)

    Figure  11.  Plots of water absorption (a) and water absorption rate (b) of EP-silicone sealant-SiO2 superhydrophobic composite coating coated concrete

    表  1  EP-硅酮胶-SiO2超疏水复合涂层各类材料含量

    Table  1.   Content of various materials of EP-silicone sealant-SiO2 superhydrophobic composite coating

    MaterialEthanolEPNeutral
    silicone glue
    SiO2Curing
    agent
    Content/wt%91.52330.5
    下载: 导出CSV
  • [1] HAMBLY D, ANDREY J, MILLS B, et al. Projected implications of climate change for road safety in Greater Vancouver, Canada[J]. Climatic Change,2013,116(3-4):613-629. doi: 10.1007/s10584-012-0499-0
    [2] LAMBLEY H, SCHUTZIUS T M, POULIKAKOS D. Superhydrophobic surfaces for extreme environmental conditions[J]. Proceedings of the National Academy of Sciences,2020,117(44):27188-27194. doi: 10.1073/pnas.2008775117
    [3] ZHANG G, LIN S, WYMAN I, et al. Robust superamphiphobic coatings based on silica particles bearing bifunctional random copolymers[J]. ACS Applied Materials and Interfaces,2013,5(24):13466-13477.
    [4] LI S, WANG X, GUO Y, et al. Recent advances on cellulose-based nanofiltration membranes and their applications in drinking water purification: A review[J]. Journal of Cleaner Production,2022,333:130171. doi: 10.1016/j.jclepro.2021.130171
    [5] ZOU H, LIN S, TU Y, et al. Simple approach towards fabrication of highly durable and robust superhydrophobic cotton fabric from functional diblock copolymer[J]. Journal of Materials Chemistry A,2013,1(37):11246-11260. doi: 10.1039/c3ta12224g
    [6] LI S, WANG D, XIAO H, et al. Ultra-low pressure cellulose-based nanofiltration membrane fabricated on layer-by-layer assembly for efficient sodium chloride removal[J]. Carbohydrate Polymers,2021,255:117352. doi: 10.1016/j.carbpol.2020.117352
    [7] 鲁浈浈, 蔡俊豪, 唐超. SiO2/凹凸棒土复合材料自修复超疏水涂层的制备与性能[J]. 复合材料学报, 2022, 39(7):3441-3450.

    LU Zhenzhen, CAI Junhao, TANG Chao. Preparation and properties of SiO2/attapulgite composite self-healing superhydrophobic coating[J]. Acta Materiae Compositae Sinica,2022,39(7):3441-3450(in Chinese).
    [8] 李彪, 李康康, 陈香李. 自修复超疏水涂层材料研究进展[J]. 化学通报, 2022, 85(4):401-409. doi: 10.14159/j.cnki.0441-3776.2022.04.003

    LI Biao, LI Kangkang, CHEN Xiangli. Progress in self-healing superhydrophobic materials[J]. Chemistry Bulletin,2022,85(4):401-409(in Chinese). doi: 10.14159/j.cnki.0441-3776.2022.04.003
    [9] 杨宏, 鲍艳. 自修复型超疏水表面的研究进展[J]. 功能材料, 2021, 52(8): 8031-8041.

    YANG Hong, BAO Yan. Research progress of self-healing superhydrophobic surface [J]. Journal of Functional Materials, 2021, 52(8): 8031-8041(in Chinese).
    [10] SONG J, ZHAO D, HAN Z, et al. Super-robust superhydrophobic concrete[J]. Journal of Materials Chemistry A,2017,5(28):14542-14550. doi: 10.1039/C7TA03526H
    [11] SHE W, YANG J, HONG J, et al. Superhydrophobic concrete with enhanced mechanical robustness: Nanohybrid composites, strengthen mechanism and durability evaluation[J]. Construction and Building Materials,2020,247:118563. doi: 10.1016/j.conbuildmat.2020.118563
    [12] YU N, XIAO X, YE Z, et al. Facile preparation of durable superhydrophobic coating with self-cleaning property[J]. Surface and Coatings Technology,2018,347:199-208. doi: 10.1016/j.surfcoat.2018.04.088
    [13] LYU J, WU B, WU N, et al. Green preparation of transparent superhydrophobic coatings with persistent dynamic impact resistance for outdoor applications[J]. Chemical Engineering Journal,2021,404:126456. doi: 10.1016/j.cej.2020.126456
    [14] SUTAR R S, KALEL P J, LATTHE S S, et al. Superhydrophobic PVC/SiO2 coating for self-cleaning application[C]//4th International Conference on Advances in Materials Science. Jath. India: Wiley-VCH GmbH, 2020, 393(1): 2000034.
    [15] GENG Y, LI S, HOU D, et al. Fabrication of superhydrophobicity on foamed concrete surface by GO/silane coating[J]. Materials Letters,2020,265:127423. doi: 10.1016/j.matlet.2020.127423
    [16] ARABZADEH A, CEYLAN H, KIM S, et al. Superhydrophobic coatings on Portland cement concrete surfaces[J]. Construction and Building Materials,2017,141:393-401. doi: 10.1016/j.conbuildmat.2017.03.012
    [17] LEI L, WANG Q, XU S, et al. Fabrication of superhydrophobic concrete used in marine environment with anti-corrosion and stable mechanical properties[J]. Construction and Building Materials,2020,251:118946. doi: 10.1016/j.conbuildmat.2020.118946
    [18] PENG C, CHEN Z, TIWARI M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature materials,2018,17(4):355-360. doi: 10.1038/s41563-018-0044-2
    [19] WANG Z, ZHU H, HE J, et al. Formation and mechanism of a super-hydrophobic surface with wear and salt spray resistance[J]. RSC Advances,2017,7(68):43181-43185. doi: 10.1039/C7RA06669D
    [20] LI M, LI Y, XUE F, et al. A robust and versatile superhydrophobic coating: Wear-resistance study upon sandpaper abrasion[J]. Applied Surface Science,2019,480:738-748. doi: 10.1016/j.apsusc.2019.03.001
    [21] 朱文澄, 桂雪峰, 李志华, 等. PE基聚硅氧烷/改性SiO2超疏水薄膜的构筑[J]. 精细化工, 2021, 38(10):2050-2056, 2116.

    ZHU Wencheng, GUI Xuefeng, LI Zhihua, et al. Construction of PE-based polysiloxane/modified SiO2 superhydrophobic film[J]. Fine Chemicals,2021,38(10):2050-2056, 2116(in Chinese).
    [22] 曹祥康, 孙晓光, 蔡光义, 等. 耐久型超疏水表面: 理论模型, 制备策略和评价方法[J]. 化学进展, 2021, 33(9):1525-1537.

    CAO Xiangkang, SUN Xiaoguang, CAI Guangyi, et al. Durable superhydrophobic surface: Theoretical models, preparation strategies and evaluation methods[J]. Progress in Chemistry,2021,33(9):1525-1537(in Chinese).
    [23] 曹祥康, 孙晓光, 肖松, 等. 聚苯并噁嗪基三维超疏水涂层的制备及抗磨损腐蚀性能[J]. 复合材料学报, 2022, 39(2):617-627. doi: 10.13801/j.cnki.fhclxb.20210407.002

    CAO Xiangkang, SUN Xiaoguang, XIAO Song, et al. Preparation and anti-wearing and anti-corrosion properties of 3D superhydrophobic coating based on poly-benzoxazine[J]. Acta Materiae Compositae Sinica,2022,39(2):617-627(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210407.002
    [24] BORMASHENKO E, BORMASHENKO Y, STEIN T, et al. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition[J]. Journal of Colloid and Interface Science,2007,311(1):212-216. doi: 10.1016/j.jcis.2007.02.049
    [25] PATANKAR N A. Transition between superhydrophobic states on rough surfaces[J]. Langmuir,2004,20(17):7097-7102. doi: 10.1021/la049329e
    [26] HAN B, WANG H, YUAN S, et al. Durable and anti-corrosion superhydrophobic coating with bistratal structure prepared by ambient curing[J]. Progress in Organic Coatings,2020,149:105922. doi: 10.1016/j.porgcoat.2020.105922
    [27] ZHAO X, LI Y, LI B, et al. Environmentally benign and durable superhydrophobic coatings based on SiO2 nanoparticles and silanes[J]. Journal of Colloid and Interface Science,2019,542:8-14. doi: 10.1016/j.jcis.2019.01.115
    [28] SHANG Q, ZHOU Y. Fabrication of transparent superhydrophobic porous silica coating for self-cleaning and anti-fogging[J]. Ceramics International,2016,42(7):8706-8712. doi: 10.1016/j.ceramint.2016.02.105
    [29] LIU S, LIU X, LATTHE S S, et al. Self-cleaning transparent superhydrophobic coatings through simple sol-gel processing of fluoroalkylsilane[J]. Applied Surface Science,2015,351:897-903. doi: 10.1016/j.apsusc.2015.06.016
    [30] ZHANG B, LI Y, HOU B. One-step electrodeposition fabrication of a superhydrophobic surface on an aluminum substrate with enhanced self-cleaning and anticorrosion properties[J]. RSC Advances,2015,5(121):100000-100010. doi: 10.1039/c5ra21525k
    [31] GOHARSHENAS MOGHADAM S, PARSIMEHR H, EHSANI A. Multifunctional superhydrophobic surfaces[J]. Advances in Colloid and Interface Science,2021,290:102397. doi: 10.1016/j.cis.2021.102397
    [32] MICHAEL N, BHUSHAN B. Hierarchical roughness makes superhydrophobic states stable[J]. Microelectronic Engineering,2007,84(3):382-386. doi: 10.1016/j.mee.2006.10.054
    [33] GUO Z, LIU W. Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure[J]. Plant Science,2007,172(6):1103-1112. doi: 10.1016/j.plantsci.2007.03.005
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  85
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2022-11-20
  • 录用日期:  2022-12-06
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回