留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维五向编织复合材料低速冲击损伤区域的量化表征

孙梦尧 张典堂 钱坤

孙梦尧, 张典堂, 钱坤. 三维五向编织复合材料低速冲击损伤区域的量化表征[J]. 复合材料学报, 2023, 40(9): 5411-5422. doi: 10.13801/j.cnki.fhclxb.20221223.002
引用本文: 孙梦尧, 张典堂, 钱坤. 三维五向编织复合材料低速冲击损伤区域的量化表征[J]. 复合材料学报, 2023, 40(9): 5411-5422. doi: 10.13801/j.cnki.fhclxb.20221223.002
SUN Mengyao, ZHANG Diantang, QIAN Kun. Quantitative characterization of low-velocity impact damage in three dimensional five- directional braided composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5411-5422. doi: 10.13801/j.cnki.fhclxb.20221223.002
Citation: SUN Mengyao, ZHANG Diantang, QIAN Kun. Quantitative characterization of low-velocity impact damage in three dimensional five- directional braided composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5411-5422. doi: 10.13801/j.cnki.fhclxb.20221223.002

三维五向编织复合材料低速冲击损伤区域的量化表征

doi: 10.13801/j.cnki.fhclxb.20221223.002
基金项目: 国家自然科学基金(11702115;12072131);江苏省基础研究计划(BK20211583)
详细信息
    通讯作者:

    钱坤,博士,教授,博士生导师,研究方向为结构功能一体化复合材料 E-mail: qiankun_8@163.com

  • 中图分类号: TB332

Quantitative characterization of low-velocity impact damage in three dimensional five- directional braided composites

Funds: National Natural Science Foundation of China (11702115; 12072131); Natural Science Foundation of Jiangsu Province (BK20211583)
  • 摘要: 低速冲击损伤区域的可视化和量化表征对提高三维编织复合材料构件可靠性和承载效率极具意义。以三维五向编织复合材料为研究对象,使用落锤冲击仪对20°和40°编织试样开展了100 J低速冲击试验。在此基础上,利用Micro-CT对内部损伤区域进行了图像采集,并建立了基于阈值的整体损伤自动提取方法。之后,沿面内两个方向将损伤分别分割8部分获取了各截面的正面凹坑深度、背面凸起高度、损伤扩展长度、损伤面积和损伤体积等数据,并进行了三维统计分析。结果表明,损伤沿着冲击中心向四周拓展并呈现对称性,主要损伤分布依次是纤维损伤、基体损伤和界面脱粘。同时,20°编织试样比40°编织试样损伤更严重,且沿着轴纱方向,两种编织角试样的损伤扩展值更大。其中, 20°样品轴向损伤扩展长度和损伤堆叠面积分别可达50.481 mm和437.039 mm2,均远超过对应横向的23.582 mm和104.004 mm2

     

  • 图  1  三维五向编织复合材料低速冲击测试与损伤量化:(a) 测试装置与样品结构;(b) 基于Micro-CT的损伤表征;(c) 损伤区域量化流程

    Figure  1.  Low-velocity impact test and damage quantification of 3 D5 D braided composites: (a) Test setup and sample structure; (b) Damage characterization based on Micro-CT; (c) Quantification process of damage area

    α—Braided angle

    图  2  三维五向编织碳纤维/环氧树脂基复合材料低速冲击响应曲线:(a) 载荷-位移曲线;(b) 载荷-能量-时间曲线;(c) 响应特征值;(d) 能量吸收与反弹

    Figure  2.  3D 5D braided carbon fiber/epoxy resin matrix composites low-velocity impact response curves: (a) Load-displacement curves; (b) Load-energy-time curves; (c) Response eigenvalues; (d) Energy absorption and rebound

    Tf, Td, Tt—Time to reach the max force, displacement, and the total time in the low-velocity impact process; Fmax—Peak load; Df, Dmax, De—Displacement to reach the peak load, the max displacement and the finallisplacement in the end; Ea, Ea%, Ee, Ee%—Kinetic energy of the rebound, the energy rebound rates, the absorbedenergy, the energy absorption rates; A20—Braided angle is 20°; A40—Braided angle is 40°

    图  3  基于Micro-CT沿XY方向3D五向编织碳纤维/环氧树脂基复合材料的内部损伤形貌

    Figure  3.  Internal damage morphology in 3D 5D braided carbon fiber/epoxy resin matrix composites along the directions of X and Y based on Micro-CT

    图  4  X视角下三维五向编织碳纤维/环氧树脂基复合材料低速冲击损伤一维扩展数据曲线:(a) 20°样品;(b) 40°样品

    Figure  4.  One-dimensional extended data curves of low-velocity impact damage for 3D 5D braided carbon fiber/epoxy resin matrix composites in the direction of X: (a) 20° sample; (b) 40°sample

    图  5  三维五向编织碳纤维/环氧树脂基复合材料在Y方向的低速冲击损伤一维扩展数据曲线:(a) 20°试样;(b) 40°试样

    Figure  5.  One-dimensional extended data curves of low-velocity impact damage for 3D 5D braided carbon fiber/epoxy resin matrix composites in the direction of Y: (a) 20° sample; (b) 40° sample

    图  6  三维五向编织碳纤维/环氧树脂基复合材料速冲击损伤二维扩展数据分布图:(a) 各区域损伤面积分布图;(b) 各区域损伤面积堆叠图

    Figure  6.  Two-dimensional extended data curves of low-velocity impact damage for 3D 5D braided carbon fiber/epoxy resin matrix composites: (a) Damage area distribution map of each region; (b) Damage area stacking diagram of each region

    图  7  三维五向编织碳纤维/环氧树脂基复合材料低速冲击损伤三维扩展数据分布图:(a) 各区域损伤体积分布图;(b) 各区域损伤体积堆叠图

    Figure  7.  Two-dimensional extended data curves of low-velocity impact damage for 3D 5D braided carbon fiber/epoxy resin matrix composites: (a) Damage volume distribution map of each region; (b) Damage volume stacking diagram of each region

    图  8  三维五向编织碳纤维/环氧树脂基复合材料低速冲击损伤演化机制

    Figure  8.  Damage evolution mechanism of 3D 5D braided carbon fiber/epoxy resin matrix composites at low-velocity impact

    表  1  三维五向编织碳纤维/环氧树脂复合材料低速冲击各特征值变异系数

    Table  1.   Coefficient of variance of characteristic values in 3D 5D braided carbon fiber/ epoxy resin matrix composites under the low-velocity impact

    SampleCv f%Cv d%Cv t%Cv F%Cv p%Cv D%Cv e%Cv k%Cv a%
    A200.0721.5680.0362.9641.0231.1733.7100.3862.441
    A402.2003.5353.1690.7092.0340.9534.2373.8522.182
    Notes: A20, A40—Samples with the braided angles of 20° and 40°; Cv f%, Cv d%, Cv t%—Coefficient of variance of the time to reach the max force, displacement, and the total time in the low-velocity impact process; Cv F%—Coefficient of variance of the peak load; Cv p%, Cv D%, Cv e%—Coefficient of variance of the displacement to reach the peak load, the max displacement and the final displacement in the end; Cv k%, Cv a%—Coefficient of variance of the rebound kinetic energy, the absorbed energy.
    下载: 导出CSV
  • [1] AI J, DU X B, LI D S, et al. Parametric study on longitudinal and out-of-plane compressive properties, progressive damage and failure of 3D five-directional braided compo-sites[J]. Composites Part A: Applied Science and Manufacturing,2022,156:106840. doi: 10.1016/j.compositesa.2022.106840
    [2] ZHANG D, ZHENG X T, WANG Z B, et al. Effects of braiding architectures on damage resistance and damage tolerance behaviors of 3D braided composites[J]. Composite Structures,2020,232:111565. doi: 10.1016/j.compstruct.2019.111565
    [3] XU K L, CHEN W, LIU L L, et al. A hierarchical multiscale strategy for analyzing the impact response of 3D braided composites[J]. International Journal of Mechanical Sciences,2021,193:106167. doi: 10.1016/j.ijmecsci.2020.106167
    [4] TALREJA R, PHAN N. Assessment of damage tolerance approaches for composite aircraft with focus on barely visible impact damage[J]. Composite Structures,2019,219:1-7.
    [5] 任涛, 彭昂, 吴大可, 等, 冲击位置对复合材料加筋板冲击后压缩行为影响试验[J]. 复合材料学报, 2022, 39(2):788-801.

    REN Tao, PENG Ang, WU Dake, et al. Experimental study on the influence of impact positions on compression-after-impact behavior of composite stiffened panels[J]. Acta Materiae Compositae Sinica, 2022, 39(2):788-801(in Chinese).
    [6] JIN Y L, WU Z Y, PAN Z X, et al. Numerical and experimental study on effect of braiding angle on low-velocity transverse punch response of braided composite tube[J]. International Journal of Damage Mechanics,2020,29(4):667-686. doi: 10.1177/1056789519881488
    [7] LI Y Y, PAN Z J, GU B H. Numerical analysis of punch shear failure and stress characteristics of three-dimensional braided composite with different braiding angles[J]. International Journal of Damage Mechanics,2019,28(9):1418-1437. doi: 10.1177/1056789519831046
    [8] SUN M Y, LIU X D, ZHANG D T, et al. Effects of structural defects on low-velocity impact damage mechanisms of three-dimensional braided composites based on X-Ray micro-computed tomography[J]. Polymer Testing,2021,104:107403. doi: 10.1016/j.polymertesting.2021.107403
    [9] LI Y Y, GU B H, SUN B Z, et al. Punch shear performance and damage mechanisms of Three-Dimensional braided composite with different thicknesses[J]. Textile Research Journal,2019,89(11):2126-2141. doi: 10.1177/0040517518786281
    [10] JIA Q, JIAO Y N. Experimental research on low-velocity impact properties of 3D braided composites[J]. Advanced Materials Research, 2010, 97-101: 1741-1744.
    [11] WU Liwei, WANG Wei, JIANG Qian, et al. Mechanical characterization and impact damage assessment of hybrid three-dimensional five-directional composites[J]. Polymers,2019,11(9):1395. doi: 10.3390/polym11091395
    [12] BIAN T Y, LYU Q H, FAN X B, et al. Effects of fiber architectures on the impact resistance of composite laminates under low-velocity impact[J]. Applied Composite Materials,2022,29(3):1125-1145. doi: 10.1007/s10443-022-10009-4
    [13] SEIFOORI S, IZADI R, LIAGHAT G H, et al. An experimental study on damage intensity in composite plates sub-jected to low-velocity impacts[J]. Polymer Testing,2020,93:106887.
    [14] CHENG J L, YE L, FU K K, et al. Effect of striker shape on impact energy absorption of a shear thickening fluid[J]. Composites Communications,2021,23:100560. doi: 10.1016/j.coco.2020.100560
    [15] LIU L L, LUO G, CHEN W, et al. Dynamic behavior and damage mechanism of 3D braided composite fan blade under bird impact[J]. International Journal of Aerospace Engineering,2018:5906078.
    [16] PENG J F, CAI D A, QIAN Y, et al. Low-velocity impact and compression after impact behavior of 3D integrated woven spacer composites[J]. Thin-Walled Structures,2022,177:109450. doi: 10.1016/j.tws.2022.109450
    [17] TUO H L, LU Z X, MA X P, et al. Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions[J]. Composites Part B: Engineering,2019,163:642-654. doi: 10.1016/j.compositesb.2019.01.006
    [18] HONG H M, LI M, ZHANG J Y, et al. Experimental research on the low velocity impact damage of CCF300/QY8911 composite laminates[J]. Advanced Materials Research,2012,583:179-182. doi: 10.4028/www.scientific.net/AMR.583.179
    [19] AUENHAMMER R M, MIKKELSEN L P, ASP L E, et al. Automated X-ray computer tomography segmentation method for finite element analysis of non-crimp fabric reinforced composites[J]. Composite Structures,2021,256:113136. doi: 10.1016/j.compstruct.2020.113136
    [20] GARCEA S C, WANG Y, WITHERS P J. X-ray computed tomography of polymer composites[J]. Composites Science and Technology,2018,156:305-319. doi: 10.1016/j.compscitech.2017.10.023
    [21] PAN Z X, HU W Y, WANG M L, et al. Transverse impact damage and axial compression failure of square braided CFRP/PMI sandwich composite beams[J]. Thin-Walled Structures,2021,162:107547. doi: 10.1016/j.tws.2021.107547
    [22] CHAI Y, WANG Y, YOUSAF Z, et al. Damage evolution in braided composite tubes under torsion studied by in-situ X-ray computed tomography[J]. Compo-sites Science and Technology,2020,188:107976. doi: 10.1016/j.compscitech.2019.107976
    [23] YU B, BLANC R, SOUTIS C, et al. Evolution of damage during the fatigue of 3D woven glass-fibre reinforced compo-sites subjected to tension-tension loading observed by time-lapse X-ray tomography[J]. Composites Part A: Applied Science and Manufacturing,2016,82:279-290. doi: 10.1016/j.compositesa.2015.09.001
    [24] GAO Y T, HU W F, XIN S F, et al. A review of applications of CT imaging on fiber reinforced composites[J]. Journal of Composite Materials,2022,56(1):133-164. doi: 10.1177/00219983211050705
    [25] YA J X, LIU Z G, WANG Y H. Micro-CT characterization on the meso-structure of three-dimensional full five-directional braided composite[J]. Applied Composite Materials,2017,24(3):593-610. doi: 10.1007/s10443-016-9528-x
    [26] LÉONARD F, STEIN J, SOUTIS C, et al. The quantification of impact damage distribution in composite laminates by analysis of X-ray computed tomograms[J]. Composites Science and Technology,2017,152:139-148. doi: 10.1016/j.compscitech.2017.08.034
    [27] ASTM International. Standard test method for measuring the resistance of a fiber reinforced polymer matrix compo-site to a drop-weight impact event: ASTMD7136/D7136 M-2015[S]. West Conshohocken: ASTM, 2015.
    [28] WANG C Z, SU D D, XIE Z F, et al. Dynamic behaviour of bio-inspired heterocyclic aramid fibre-reinforced laminates subjected to low-velocity drop-weight impact[J]. Composites Part A: Applied Science and Manufacturing,2022,153:106733. doi: 10.1016/j.compositesa.2021.106733
    [29] XIAO L, WANG G H, QIU S, et al. Exploration of energy absorption and viscoelastic behavior of CFRPs subjected to low velocity impact[J]. Composites Part B: Engineering,2019,165:247-254. doi: 10.1016/j.compositesb.2018.11.126
    [30] RAVANDI M, TEO W S, TRAN L Q N, et al. Low velocity impact performance of stitched flax/epoxy composite laminates[J]. Composites Part B: Engineering,2017,117:89-100. doi: 10.1016/j.compositesb.2017.02.003
    [31] WANG M L, PAN Z X, YING Z P, et al. Symmetric and asymmetric intercalation effect on the low-velocity impact behavior of carbon/kevlar hybrid woven laminates[J]. Compo-site Structures,2022,297:115919. doi: 10.1016/j.compstruct.2022.115919
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  95
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 修回日期:  2022-11-22
  • 录用日期:  2022-12-05
  • 网络出版日期:  2022-12-27
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回