留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木质素基复合材料的直写式3D打印及其功能应用

姜波 郭新宇 焦欢 金永灿

姜波, 郭新宇, 焦欢, 等. 木质素基复合材料的直写式3D打印及其功能应用[J]. 复合材料学报, 2023, 40(4): 1913-1923. doi: 10.13801/j.cnki.fhclxb.20221205.002
引用本文: 姜波, 郭新宇, 焦欢, 等. 木质素基复合材料的直写式3D打印及其功能应用[J]. 复合材料学报, 2023, 40(4): 1913-1923. doi: 10.13801/j.cnki.fhclxb.20221205.002
JIANG Bo, GUO Xinyu, JIAO Huan, et al. Direct ink writing of lignin-based composites and their applications[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1913-1923. doi: 10.13801/j.cnki.fhclxb.20221205.002
Citation: JIANG Bo, GUO Xinyu, JIAO Huan, et al. Direct ink writing of lignin-based composites and their applications[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1913-1923. doi: 10.13801/j.cnki.fhclxb.20221205.002

木质素基复合材料的直写式3D打印及其功能应用

doi: 10.13801/j.cnki.fhclxb.20221205.002
基金项目: 国家自然科学基金(32201500;32271797);江苏省自然科学基金(BK20220431);江苏省高等学校自然科学研究基金(21KJB220001);国家林业和草原局植物纤维功能材料重点实验室开放基金(2022KFJJ05)
详细信息
    通讯作者:

    姜波,博士,副教授,硕士生导师,研究方向为生物质化学与材料 E-mail: bjiang@njfu.edu.cn

  • 中图分类号: O636.2

Direct ink writing of lignin-based composites and their applications

Funds: National Natural Science Foundation of China (32201500; 32271797); Natural Science Foundation of Jiangsu Province (BK20220431); Natural Science Foundation of the Jiangsu Higher Education Institutions of China (21KJB220001); Open-Ended Fund of National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials (2022KFJJ05)
  • 摘要: 作为自然界最丰富的可再生芳香族生物质资源,木质素近年来在能源、环境、医学等领域受到广泛关注。其中,采用3D打印技术构建具有特定结构和功能的木质素基复合材料是提升木质素附加值的重要途径之一,同时可有效避免木质素化学结构复杂多变、多分散性高、刚性大等在传统材料制备过程中带来的负面影响。本文围绕木质素基复合材料的直写式3D打印,重点综述了近年来木质素基复合材料在直写式3D打印方面的研究成果与进展。首先介绍了木质素的结构特性及直写式3D打印技术;然后系统总结了木质素流变学特性与其打印性能之间的构-效关系;最后讨论了3D打印的木质素基复合材料在能源、环境等领域的应用现状及其面临的挑战,并展望了木质素基复合材料在直写式3D打印方面的发展方向。

     

  • 图  1  木质素的分子结构模型:(a) 针叶材木质素;(b) 阔叶材木质素;(c) 草类木质素;(d) 阔叶材和草类木质素中阿魏酸酯连接形式;(e) 草类木质素中阿魏酸酯与阿拉伯木聚糖的连接形式;(f) 草类木质素中麦黄酮结构[9]

    Figure  1.  Molecular structure model of lignin: (a) Softwood lignin; (b) Hardwood lignin; (c) Grass lignin; (d) Ferulate in hardwoods and grasses lignin; (e) Ferulate on araxyl in grasses; (f) Tricin in grasses[9]

    A—β-ether (β-O-4); B—Phenylcoumaran (β-5); C—Resinol (β-β); C′— Tetrahydrofuran (β-β); D—Dibenzodioxocin (5-5/4-O-β); E—Biphenyl ether (5-O-4); F—Spirodienone (β-1); X—Cinnamyl alcohol endgroup; pC—p-coumarate; pB—p-hydroxybenzoate; FA—Ferulate; Ac—Acetate; T—Tricin; H—p-hydroxyphenyl unit; G—Guaiacyl unit; S—Syringyl unit

    图  2  直写式3D打印过程及其特点[16-18]

    Figure  2.  Process and features of direct ink writing[16-18]

    图  3  木质素/聚氧乙烯-聚氧 丙烯-聚氧乙烯三嵌段共聚物(F127)“墨水”的流变学特性和可打印性[31]

    Figure  3.  Rheological behavior and printability of lignin/poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (F127) ink[31]

    图  4  木质素/g-C3N4/碳纳米管(CNT)“墨水”的流变学特性和可打印性

    Figure  4.  Rheological behavior and printability of lignin/g-C3N4/carbon nanotube (CNT) ink[38]

    图  5  垂直打印过程“墨水”挤出速率和针头上升速率对打印形状的影响[39]

    Figure  5.  Effects of feed rate and retraction rate on pillar morphology during vertical 3D printing[39]

    ΔA1—A downward movement of the piston to a required amount; ΔA2—An upward movement of pistion to its initial position; z—Moving direction of pistion; t—Time

    图  6  水溶性木质素/石墨烯的流变学特性[37]:(a) 黏度;(b) 模量

    Figure  6.  Rheological behavior and printability of water-soluble lignin/graphene ink[37]: (a) Viscosity; (b) Moduli

    GO—Graphene oxide

    图  7  木质素基垂直阵列催化剂用于光电水裂解制氢[38]

    Figure  7.  Lignin-based arrays catalyst for photoelectrochemical hydrogen evolution[38]

    VB—Valence band; CB—Conduction band

    图  8  3D打印木质素/石墨烯(GO)碳材料的电性能[37]

    Figure  8.  Electrical properties of 3D printed lignin/graphene(GO)-based carbon materials[37]

    图  9  3D打印木质素基活性碳的染料吸附性能[31]

    Figure  9.  Dye adsorption property of lignin-based active carbon constructed by 3D printing[31]

  • [1] CHEN C, KUANG Y, ZHU S, et al. Structure-property-function relationships of natural and engineered wood[J]. Nature Reviews Materials,2020,5:642-666. doi: 10.1038/s41578-020-0195-z
    [2] MANDLEKAR N, CAYLA A, RAULT F, et al. An overview on the use of lignin and its derivatives in fire retardant polymer systems[M]//Lignin-Trends and Applications. London: InTechOpen, 2018: 207-231.
    [3] 姜波, 金永灿. 基于木质素分子结构特性的功能材料研究进展[J]. 复合材料学报, 2022, 39(7):3059-3083. doi: 10.13801/j.cnki.fhclxb.20220321.001

    JIANG Bo, JIN Yongcan. Research progress of lignin functional materials based on its structural properties[J]. Acta Materiae Compositae Sinica,2022,39(7):3059-3083(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220321.001
    [4] VAN DE WERKEN N, TEKINALP H, KHANBOLOUKI P, et al. Additively manufactured carbon fiber-reinforced composites: State of the art and perspective[J]. Additive Manufacturing,2020,31:100962. doi: 10.1016/j.addma.2019.100962
    [5] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4):1-4. doi: 10.3969/j.issn.1671-5276.2013.04.001

    LU Bingheng, LI Dichen. Development of the additive manufacturing (3D printing) technology[J]. Machine Building Automation,2013,42(4):1-4(in Chinese). doi: 10.3969/j.issn.1671-5276.2013.04.001
    [6] PARK S, SHOU W, MAKATURA L, et al. 3D printing of polymer composites: Materials, processes, and applications[J]. Matter,2022,5(1):43-76. doi: 10.1016/j.matt.2021.10.018
    [7] LIU C J. Deciphering the enigma of lignification: Precursor transport, oxidation, and the topochemistry of lignin assembly[J]. Molecular Plant,2012,5(2):304-317. doi: 10.1093/mp/ssr121
    [8] 袁同琦, 孙卓华, 戴林. 木质素化学[M]. 北京: 中国轻工业出版社, 2021.

    YUAN Tongqi, SUN Zhuohua, DAI Lin. Lignin chemistry[M]. Beijing: China Light Industry Press Ltd., 2021(in Chinese).
    [9] ABU-OMAR M M, BARTA K, BECKHAM G T, et al. Guidelines for performing lignin-first biorefining[J]. Energy & Environmental Science,2021,14:262-292. doi: 10.1039/D0EE02870C
    [10] JIANG B, SONG J, JIN Y. A flavonoid monomer tricin in Gramineous plants: Metabolism, bio/chemosynthesis, biological properties, and toxicology[J]. Food Chemistry,2020,320:126617. doi: 10.1016/j.foodchem.2020.126617
    [11] FIGUEIREDO P, LINTINEN K, HIRVONEN J T, et al. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications[J]. Progress in Materials Science,2018,93:233-269. doi: 10.1016/j.pmatsci.2017.12.001
    [12] JIANG B, CHEN C, LIANG Z, et al. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement[J]. Advanced Functional Materials,2020,30(4):1906307. doi: 10.1002/adfm.201906307
    [13] SIPPONEN M H, LANGE H, CRESTINI C, et al. Lignin for nano- and microscaled carrier systems: Applications, trends, and challenges[J]. ChemSusChem,2019,12(10):2039-2054. doi: 10.1002/cssc.201900480
    [14] SUGIARTO S, LEOW Y, TAN C L, et al. How far is Lignin from being a biomedical material?[J]. Bioactive Materials,2022,8:71-94. doi: 10.1016/j.bioactmat.2021.06.023
    [15] SAADI M, MAGUIRE A, POTTACKAL N T, et al. Direct ink writing: A 3D printing technology for diverse materials[J]. Advanced Materials,2022,34(28):2108855. doi: 10.1002/adma.202108855
    [16] TAGLIAFERRI S, PANAGIOTOPOULOS A, MATTEVI C. Direct ink writing of energy materials[J]. Materials Advances,2021,2(2):540-563. doi: 10.1039/D0MA00753F
    [17] LEWIS J A, SMAY J E, STUECKER J, et al. Direct ink writing of three-dimensional ceramic structures[J]. Journal of the American Ceramic Society,2006,89(12):3599-3609. doi: 10.1111/j.1551-2916.2006.01382.x
    [18] ZHENG X, SMITH W, JACKSON J, et al. Multiscale metallic metamaterials[J]. Nature Materials,2016,15:1100-1106. doi: 10.1038/nmat4694
    [19] 王玉, 张靖翔, 张宝强, 等. 3D打印石墨烯基功能材料的研究进展[J]. 中国材料进展, 2018, 37(8):620-631.

    WANG Yu, ZHANG Jingxiang, ZHANG Baoqiang, et al. Recent advances of 3D printing graphene based functional materials[J]. Materials China,2018,37(8):620-631(in Chinese).
    [20] 姜雨淋, 王卉, 张克勤. 生物3D打印用丝素蛋白基凝胶墨水的研究进展[J]. 纺织学报, 2021, 42(11):1-8.

    JIANG Yulin, WANG Hui, ZHANG Keqin. Research progress of silk fibroin-based hydrogel bioinks for 3D bio-printing[J]. Journal of Textile Research,2021,42(11):1-8(in Chinese).
    [21] LEWIS J A. Direct ink writing of 3D functional materials[J]. Advanced Functional Materials,2006,16(17):2193-2204. doi: 10.1002/adfm.200600434
    [22] COUSSOT P. Yield stress fluid flows: A review of experimental data[J]. Journal of Non-Newtonian Fluid Mechanics,2014,211:31-49. doi: 10.1016/j.jnnfm.2014.05.006
    [23] QIAN Y, LI C, QI Y, et al. 3D printing of graphene oxide composites with well controlled alignment[J]. Carbon,2021,171:777-784. doi: 10.1016/j.carbon.2020.08.077
    [24] 赵宇, 武喜凯, 朱伶俐, 等. 玄武岩纤维对3D打印水泥基材料可打印性的影响[J]. 复合材料学报, 2022, 39(11):5540-5550.

    ZHAO Yu, WU Xikai, ZHU Lingli, et al. Influence of basalt fiber on the printability of 3D printing cement-based materials[J]. Acta Materiae Compositae Sinica,2022,39(11):5540-5550(in Chinese).
    [25] LIANG Z, PEI Y, CHEN C, et al. General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment[J]. ACS Nano,2019,13(11):12653-12661. doi: 10.1021/acsnano.9b04202
    [26] ROCHA V G, SAIZ E, TIRICHENKO I S, et al. Direct ink writing advances in multi-material structures for a sustainable future[J]. Journal of Materials Chemistry A,2020,8(31):15646-15657. doi: 10.1039/D0TA04181E
    [27] CORKER A, NG H C, POOLE R J, et al. 3D printing with 2D colloids: Designing rheology protocols to predict 'printability' of soft-materials[J]. Soft Matter,2019,15(6):1444-1456. doi: 10.1039/C8SM01936C
    [28] XIA Y, LU Z, CAO J, et al. Microstructure and mechanical property of Cf/SiC core/shell composite fabricated by direct ink writing[J]. Scripta Materialia,2019,165:84-88. doi: 10.1016/j.scriptamat.2019.02.016
    [29] SKYLAR-SCOTT M A, MUELLER J, VISSER C W, et al. Voxelated soft matter via multimaterial multinozzle 3D printing[J]. Nature,2019,575:330-335. doi: 10.1038/s41586-019-1736-8
    [30] PENG X, KUANG X, ROACH D J, et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices[J]. Additive Manufacturing,2021,40:101911. doi: 10.1016/j.addma.2021.101911
    [31] JIANG B, YAO Y, LIANG Z, et al. Lignin-based direct ink printed structural scaffolds[J]. Small,2020,16(31):1907212. doi: 10.1002/smll.201907212
    [32] EBERS L S, LABORIE M P. Direct ink writing of fully bio-based liquid crystalline lignin/hydroxypropyl cellulose aqueous inks: Optimization of formulations and printing parameters[J]. ACS Applied Materials & Interfaces,2020,3(10):6897-6907. doi: 10.1021/acsabm.0c00800
    [33] BAHCEGUL E G, BAHCEGUL E, OZKAN N. 3D printing of crude lignocellulosic biomass extracts containing hemicellulose and lignin[J]. Industrial Crops and Products,2022,186:115234. doi: 10.1016/j.indcrop.2022.115234
    [34] ÄKRÄS L. 3D bioprinting inks based on cellulose nanofibrils and colloidal lignin particles[D]. Helsinki: Aalto University, 2019.
    [35] ZHANG X, MORITS M, JONKERGOUW C, et al. Three-dimensional printed cell culture model based on spherical colloidal lignin particles and cellulose nanofibril-alginate hydrogel[J]. Biomacromolecules,2020,21(5):1875-1885. doi: 10.1021/acs.biomac.9b01745
    [36] GLEUWITZ F R, SIVASANKARAPILLAI G, SIQUEIRA G, et al. Lignin in bio-based liquid crystalline network material with potential for direct ink writing[J]. ACS Applied Bio Materials,2020,3(9):6049-6058. doi: 10.1021/acsabm.0c00661
    [37] ROMAN J, NERI W, FIERRO V, et al. Lignin-graphene oxide inks for 3D printing of graphitic materials with tunable density[J]. Nano Today,2020,33:100881. doi: 10.1016/j.nantod.2020.100881
    [38] JIANG B, HUANG H, GONG W, et al. Wood-inspired binder enabled vertical 3D printing of g-C3N4/CNT arrays for highly efficient photoelectrochemical hydrogen evolution[J]. Advanced Functional Materials,2021,31(45):2105045. doi: 10.1002/adfm.202105045
    [39] NAN B, GALINDO-ROSALES F J, FERREIRA J M F. 3D printing vertically: Direct ink writing free-standing pillar arrays[J]. Materials Today,2020,35:16-24. doi: 10.1016/j.mattod.2020.01.003
    [40] NGUYEN N A, BARNES S H, BOWLAND C C, et al. A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability [J]. Science Advances, 2018, 4(12): eaat4967.
    [41] 王会会, 杨健, 杨怡洛, 等. 木质素及其衍生物在3D打印光敏树脂中的应用研究[J]. 复合材料学报, 2022, 40(4):1964-1978. doi: 10.13801/j.cnki.fhclxb.20220819.003

    WANG Huihui, YANG Jian, YANG Yiluo, et al. Researches and applications of lignin and its derivatives in 3D printing photosensitive resins[J]. Acta Materiae Compositae Sinica,2022,40(4):1964-1978(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220819.003
    [42] AJDARY R, KRETZSCHMAR N, BANIASADI H, et al. Selective laser sintering of lignin-based composites[J]. ACS Sustainable Chemistry Engineering,2021,9(7):2727-2735. doi: 10.1021/acssuschemeng.0c07996
  • 加载中
图(9)
计量
  • 文章访问数:  1034
  • HTML全文浏览量:  348
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2022-11-21
  • 录用日期:  2022-11-26
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回