留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化锰基纤维状超级电容器的研究进展

田晓娟 程新跃 魏取福

田晓娟, 程新跃, 魏取福. 二氧化锰基纤维状超级电容器的研究进展[J]. 复合材料学报, 2023, 40(6): 3187-3196. doi: 10.13801/j.cnki.fhclxb.20221205.001
引用本文: 田晓娟, 程新跃, 魏取福. 二氧化锰基纤维状超级电容器的研究进展[J]. 复合材料学报, 2023, 40(6): 3187-3196. doi: 10.13801/j.cnki.fhclxb.20221205.001
TIAN Xiaojuan, CHENG Xinyue, WEI Qufu. Rencent research progress and prospects of manganese dioxide based fiber supercapacitor[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3187-3196. doi: 10.13801/j.cnki.fhclxb.20221205.001
Citation: TIAN Xiaojuan, CHENG Xinyue, WEI Qufu. Rencent research progress and prospects of manganese dioxide based fiber supercapacitor[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3187-3196. doi: 10.13801/j.cnki.fhclxb.20221205.001

二氧化锰基纤维状超级电容器的研究进展

doi: 10.13801/j.cnki.fhclxb.20221205.001
详细信息
    通讯作者:

    魏取福,博士,教授,博士生导师,研究方向为功能纳米纺织材料 E-mail: qfwei@jiangnan.edu.cn

  • 中图分类号: TB333

Rencent research progress and prospects of manganese dioxide based fiber supercapacitor

  • 摘要: 二氧化锰(MnO2)具有高容量、环保、低成本等优点,是一种极具发展前景的超级电容器电极材料。随着智能可穿戴技术的不断发展,纤维状超级电容器由于其灵活性和可编织性受到广泛关注。将高性能的MnO2电极材料构建纤维状超级电容器作为可穿戴技术的重要组成部分也被不断研究和拓展创新。根据目前MnO2基纤维状超级电容器的发展和可穿戴能源产品的需求,本文对温和中性电解质中MnO2的储能机制进行分析,针对MnO2基纤维状超级电容器在实际可穿戴应用中存在的连续化生产困难、实际利用率低等问题,提出了解决策略,深入分析了各种解决策略的利弊及方案中材料的协同作用,为未来的研究方向提供新的思路,最后对其面临的挑战和未来的发展进行了归纳总结,MnO2基纤维状超级电容器有望在今后取得重大进展,成为新一代能源纺织品的高效供能体系。

     

  • 图  1  MnO2的电荷储存过程

    Figure  1.  Charge storage process of MnO2

    图  2  纤维状超级电容器组装方法:(a) 并列型;(b) 加捻型;(c) 同轴型

    Figure  2.  Assembly method of fiber supercapacitor: (a) Parallel structure;(b) Twisted structure; (c) Coaxial structure

    图  3  湿法纺丝制备MnO2基纤维状超级电容器的制备流程图、实物图和SEM图像:(a) 纤维状不对称超级电容器(ASC)的设计和制造示意图[27];(b) 混合纤维的制备和结构的示意图及制备MnO2/单壁碳纳米管(SWCNT)纤维的照片[26];(c) 照片显示三个预先准备好的器件串联在一起,在打结状态下驱动一个红色发光二极管(1.8 V、20 mA)[28];(d) 炭黑(CB)/碳纳米管(CNT)/MnO2纳米棒(NT)复合纤维表面和截面的SEM图像[29]

    Figure  3.  Preparation flow chart, actual picture and SEM images of MnO2-based fibrous supercapacitor prepared by wet spinning: (a) Schematic illustration of the design and fabrication of the fiber-based asymmetric supercapacitor (ASC)[27]; (b) Schematic showing the preparation and structure of the hybrid fibers and photograph of the as-prepared MnO2/single-walled carbon nanotubes (SWCNT) fiber wound on a rod[26]; (c) Photograph showing three as prepared devices connected in series driving a red light emitting diode (1.8 V, 20 mA) under the knotting state[28]; (d) SEM images of surface and cross-sections of carbon black (CB)/carbon nanotube (CNT)/MnO2 nanorod (NT) fibres[29]

    图  4  旋喷自旋装置和合成不同阶段聚合物-金属氧化物悬浮液示意图[31]

    Figure  4.  Photo and schematic of the RJ-spin setup and polymer-metal oxide suspension at different stages of the synthesis[31]

    RPM—Revolutions per minute

    图  5  原位生长法制备MnO2基纤维状超级电容器的流程图及性能测试:(a) δ-MnO2/多孔还原氧化石墨烯(HRGO)纤维加捻缠绕而成的线状超级电容器示意图[32];(b) MnO2@活性炭纤维(ACF)器件的结构和电化学性能[33];(c) MnO2@MXene/碳纳米管纤维(CNTF)的制备工艺示意图[34];(d) Te/Au/MnO2杂化电极的合成过程示意图[35]

    Figure  5.  Flow chart and performance test of MnO2-based fibrous supercapacitor prepared by in-situ growth method: (a) Schematic of a wire-shaped supercapacitor fabricated from two twined δ-MnO2/porous reduced graphene oxide (HRGO) fibers with polyelectrolyte[32]; (b) Structure and electrochemical performance of MnO2@activated carbon fibers (ACF) devices[33]; (c) Schematic illustration to the preparation process of MnO2@MXene/carbon nanotube fiber (CNTF) fibers[34]; (d) Schematic illustration of the synthesis process of the hybrid Te/Au/MnO2 electrode[35]

    图  6  电沉积法制备MnO2基纤维状超级电容器的流程图、实物图、SEM图像和性能测试:(a) MnO2/石墨烯(G)/石墨烯纤维(GF)缠绕制成的光纤电容示意图和用于弯曲试验的光纤电容示意图[39];(b) Ag/MnO2复合纱工艺示意图[42];(c) MnO2@CNT纤维超级电容器的针织物[43];(d) 湿纺CNT纤维的制备工艺原理和超级电容器制备图[40]

    Figure  6.  Flow chart, physical picture, SEM images and performance test of MnO2 based fibrous supercapacitor prepared by electrodeposition: (a) Schematic illustration of a fiber capacitor fabricated from two twined MnO2/graphene (G)/graphene fiber (GF) with polyelectrolyte and schematic illustration of fiber capacitor for bending test[39]; (b) Schematic illustration showing Ag/MnO2 composite sheath yarn fabrication process[42]; (c) Fabrication scheme and images of a knitted MnO2@CNT fiber supercapacitor[43]; (d) Schematics of the preparation procedures for the wet-spun carbon nanotube fibers and schematic diagram of two symmetric pseudocapacitive hybrid wet-spun CNT fiber-based supercapacitor[40]

    图  7  负载Mn2+电纺纤维制备MnO2@聚丙烯酸(PAA)/聚吡咯(PPy)纳米纤维[44]

    Figure  7.  Scheme of the fabrication of the MnO2@polyacrylic acid (PAA)/polypyrrole (PPy) core-shell nanofibers with Mn2+ ions[44]

  • [1] LI M, LU J, JI X, et al. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes[J]. Nature Reviews Materials,2020,5(4):276-294. doi: 10.1038/s41578-019-0166-4
    [2] GUO S, LIANG S, ZHANG B, et al. Cathode interfacial layer formation via in situ electrochemically charging in aqueous zinc-ion battery[J]. ACS Nano, 2019, 13: 13456-13464.
    [3] HOU J H, CAO C B, IDREES F. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J]. ACS Nano,2015,9(3):2556-2564. doi: 10.1021/nn506394r
    [4] 林峰, 杨升元. Ca-Alginate/MXene纤维状柔性电极材料的制备及其电化学性能研究[J]. 山东化工, 2021, 50(4):5-7. doi: 10.3969/j.issn.1008-021X.2021.04.002

    LIN F, YANG S Y. Preparation and electrochemical properties of Ca-alginate/MXene fiber flexible electrode materials[J]. Shandong Chemical Industry,2021,50(4):5-7(in Chinese). doi: 10.3969/j.issn.1008-021X.2021.04.002
    [5] CANDELARIA S L, SHAO Y, ZHOU W, et al. Nanostructured carbon for energy storage and conversion[J]. Nano Energy,2012,1(2):195-220. doi: 10.1016/j.nanoen.2011.11.006
    [6] FARAJI S, ANI F N. The development supercapacitor from activated carbon by electroless plating—A review[J]. Renewable and Sustainable Energy Reviews,2015,42:823-34. doi: 10.1016/j.rser.2014.10.068
    [7] MIRABEDINI A, LU Z, MOSTAFAVIAN S, et al. Triaxial carbon nanotube/conducting polymer wet-Spun fibers supercapacitors for wearable electronics[J]. Nanomaterials (Basel), 2020, 11(1): 11010003.
    [8] JIN K, ZHOU M, ZHAO H, et al. Electrodeposited CuS nanosheets on carbonized cotton fabric as flexible supercapacitor electrode for high energy storage[J]. Electrochimica Acta,2019,295:668-676. doi: 10.1016/j.electacta.2018.10.182
    [9] LIMA R M A P, DE OLIVEIRA M C A, DE OLIVEIRA H P. Wearable supercapacitors based on graphene nanoplatelets/carbon nanotubes/polypyrrole composites on cotton yarns electrodes[J]. SN Applied Sciences, 2019, 1(4): 325.
    [10] QI J, CHEN Y, LI Q, et al. Hierarchical NiCo layered double hydroxide on reduced graphene oxide-coated commercial conductive textile for flexible high-performance asymmetric supercapacitors[J]. Journal of Power Sources,2020,445:227342.
    [11] 孙悦, 范杰, 王亮, 等. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12):131-138.

    SUN Y, FAN J, WANG L, et al. Research progress of wearable technology in textile and apparels[J]. Journal of Textile Science and Technolog,2018,39(12):131-138(in Chinese).
    [12] 王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12):157-165.

    WANG J L, LIU Y, JING Y Y, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Science and Technology,2020,41(12):157-165(in Chinese).
    [13] CAO Z, LI R, XU P, et al. Highly dispersed RuO2-biomass carbon composite made by immobilization of ruthenium and dissolution of coconut meat with octyl ammonium salicylate ionic liquid for high performance flexible supercapacitor[J]. Journal of Colloid and Interface Science,2022,606(1):424-433.
    [14] AHIRRAO D J, WILSON H M, JHA N. TiO2-nanoflowers as flexible electrode for high performance supercapacitor[J]. Applied Surface Science,2019,491:765-778. doi: 10.1016/j.apsusc.2019.05.076
    [15] HONG X, LI S, WANG R, et al. Hierarchical SnO2 nanoclusters wrapped functionalized carbonized cotton cloth for symmetrical supercapacitor[J]. Journal of Alloys and Compounds,2019,775:15-21. doi: 10.1016/j.jallcom.2018.10.099
    [16] SUN G, REN H, SHI Z, et al. V2O5/vertically-aligned carbon nanotubes as negative electrode for asymmetric supercapacitor in neutral aqueous electrolyte[J]. Journal of Colloid and Interface Science,2021,588:847-856. doi: 10.1016/j.jcis.2020.11.126
    [17] RABANI I, YOO J, KIM H S, et al. Highly dispersive Co3O4 nanoparticles incorporated into a cellulose nanofiber for a high-performance flexible supercapacitor[J]. Nanoscale,2021,13(1):355-370. doi: 10.1039/D0NR06982E
    [18] RAUT S D, SHINDE N M, GHULE B G, et al. Room-temperature solution-processed sharp-edged nanoshapes of molybdenum oxide for supercapacitor and electrocatalysis applications[J]. Chemical Engineering Journal,2022,433:133627.
    [19] SAMUEL E, JOSHI B, KIM Y I, et al. ZnO/MnOx nanoflowers for high-performance supercapacitor electrodes[J]. ACS Sustainable Chemistry & Engineering,2020,8(9):3697-3708.
    [20] GUO W, YU C, LI S, et al. Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives[J]. Nano Energy,2019,57:459-472. doi: 10.1016/j.nanoen.2018.12.015
    [21] YUE T, SHEN B, GAO P. Carbon material/MnO2 as conductive skeleton for supercapacitor electrode material: A review[J]. Renewable and Sustainable Energy Reviews,2022,158:112131.
    [22] LEE H Y, GOODENOUGH J B. Supercapacitor behavior with KCl electrolyte[J]. Brief Communication,1999,144:220-223.
    [23] LI N, ZHU X, ZHANG C, et al. Controllable synthesis of different microstructured MnO2 by a facile hydrothermal method for supercapacitors[J]. Journal of Alloys and Compounds,2017,692:26-33. doi: 10.1016/j.jallcom.2016.08.321
    [24] YAN J, SUMBOJA A, WANG X, et al. Insights on the fundamental capacitive behavior: A case study of MnO2[J]. Small,2014,10(17):3568-3578. doi: 10.1002/smll.201303553
    [25] PEI Z, ZHU M, HUANG Y, et al. Dramatically improved energy conversion and storage efficiencies by simultaneously enhancing charge transfer and creating active sites in MnOx/TiO2 nanotube composite electrodes[J]. Nano Energy,2016,20:254-263. doi: 10.1016/j.nanoen.2015.12.025
    [26] MA W, CHEN S, YANG S, et al. Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors[J]. Journal of Power Sources,2016,306:481-488. doi: 10.1016/j.jpowsour.2015.12.063
    [27] MA W, CHEN S, YANG S, et al. Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density[J]. Carbon,2017,113:151-158. doi: 10.1016/j.carbon.2016.11.051
    [28] LI G X, HOU P X, LUAN J, et al. A MnO2 nanosheet/single-wall carbon nanotube hybrid fiber for wearable solid-state supercapacitors[J]. Carbon,2018,140:634-643. doi: 10.1016/j.carbon.2018.09.011
    [29] GARCIA T J, ROBERTS A J, SLADE R C T, et al. One-step wet-spinning process of CB/CNT/MnO2 nanotubes hybrid flexible fibres as electrodes for wearable supercapacitors[J]. Electrochimica Acta,2019,296:481-490. doi: 10.1016/j.electacta.2018.10.201
    [30] ROGALSKI J J, BASTIAANSEN C W M, PEIJS T. Rotary jet spinning review-A potential high yield future for polymer nanofibers[J]. Nanocomposites,2017,3(4):97-121. doi: 10.1080/20550324.2017.1393919
    [31] SAHA S, SADHUKHAN P, ROY C S, et al. Rotary-Jet spin assisted fabrication of MnO2 microfiber for supercapacitor electrode application[J]. Materials Letters,2020,277:128342.
    [32] ZHANG J, YANG X, HE Y, et al. δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor[J]. Journal of Materials Chemistry A,2016,4(23):9088-9096. doi: 10.1039/C6TA02989B
    [33] LI H, LIANG J, LI H, et al. Activated carbon fibers with manganese dioxide coating for flexible fiber supercapacitors with high capacitive performance[J]. Journal of Energy Chemistry,2019,31:95-100. doi: 10.1016/j.jechem.2018.05.008
    [34] LIU Q, YANG J, LUO X, et al. Fabrication of a fibrous MnO2@MXene/CNT electrode for high-performance flexible supercapacitor[J]. Ceramics International,2020,46(8):11874-11881. doi: 10.1016/j.ceramint.2020.01.222
    [35] CAO J, SAFDAR M, WANG Z, et al. High performance flexible supercapacitor electrodes based on Te nanowire arrays[J]. Journal of Materials Chemistry A, 2013, 1(34): 10024-10029.
    [36] WEN Y, QIN T, WANG Z, et al. Self-supported binder-free carbon fibers/MnO2 electrodes derived from disposable bamboo chopsticks for high-performance supercapacitors[J]. Journal of Alloys and Compounds,2017,699:126-135. doi: 10.1016/j.jallcom.2016.12.330
    [37] NOH J, YOON C M, KIM Y K, et al. High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3[J]. Carbon,2017,116:470-478. doi: 10.1016/j.carbon.2017.02.033
    [38] GONG W, FUGETSU B, WANG Z, et al. Thicker carbon-nanotube/manganese-oxide hybridized nanostructures as electrodes for the creation of fiber-shaped high-energy-density supercapacitors[J]. Carbon,2019,154:169-177. doi: 10.1016/j.carbon.2019.08.004
    [39] CHEN Q, MENG Y, HU C, et al. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor[J]. Journal of Power Sources,2014,247:32-39. doi: 10.1016/j.jpowsour.2013.08.045
    [40] LU Z, CHAO Y, GE Y, et al. High-performance hybrid carbon nanotube fibers for wearable energy storage[J]. Nanoscale,2017,9(16):5063-5071. doi: 10.1039/C7NR00408G
    [41] CHOI C, KIM J H, SIM H J, et al. Microscopically buckled and macroscopically coiled fibers for ultra-stretchable supercapacitors[J]. Advanced Energy Materials, 2016, 7(6): 1602021.
    [42] KIM J H, CHOI C, LEE J M, et al. Ag/MnO2 composite sheath-core structured yarn supercapacitors[J]. Scientific Reports,2018,8(1):13309. doi: 10.1038/s41598-018-31611-2
    [43] PARK T, JANG Y, PARK J W, et al. Quasi-solid-state highly stretchable circular knitted MnO2@CNT supercapacitor[J]. RSC Advances,2020,10(24):14007-14012. doi: 10.1039/D0RA01398F
    [44] LU X, SHEN C, ZHANG Z, et al. Core-shell composite fibers for high-performance flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces,2018,10(4):4041-4049. doi: 10.1021/acsami.7b12997
    [45] SAMANTA P, GHOSH S, SAMANTA P, et al. Alteration in capacitive performance of Sn-decorated MnO2 with different crystal structure: An investigation towards the development of high-performance supercapacitor electrode materials[J]. Journal of Energy Storage,2020,28:101281.
    [46] XU M, CAI Y, WANG T, et al. Two-dimensional Mg-doped MnO2@carbon cloth nanosheets for high performance typical flexible solid supercapacitor[J]. Journal of Alloys and Compounds,2021,887(1):160243-160250.
    [47] CHI H Z, ZHU H, GAO L. Boron-doped MnO2/carbon fiber composite electrode for supercapacitor[J]. Journal of Alloys and Compounds,2015,645:199-205. doi: 10.1016/j.jallcom.2015.05.014
    [48] CHI H Z, YIN S, CEN D, et al. The capacitive behaviours of MnO2/carbon fiber composite electrode prepared in the presence of sodium tetraborate[J]. Journal of Alloys and Compounds,2016,678:42-50. doi: 10.1016/j.jallcom.2016.03.292
    [49] ZONG Q, ZHANG Q, MEI X, et al. Facile synthesis of Na-doped MnO2 nanosheets on carbon nanotube fibers for ultrahigh-energy-density all-solid-state wearable asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces,2018,10(43):37233-37241.
  • 加载中
图(7)
计量
  • 文章访问数:  705
  • HTML全文浏览量:  397
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-09
  • 修回日期:  2022-11-09
  • 录用日期:  2022-11-30
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回