留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚多巴胺-埃洛石纳米管改性不锈钢网及其油水分离性能

姬帅岩 黄成毅 蔡鹏麟 李莎 陈晓婷

姬帅岩, 黄成毅, 蔡鹏麟, 等. 聚多巴胺-埃洛石纳米管改性不锈钢网及其油水分离性能[J]. 复合材料学报, 2023, 40(9): 5124-5133. doi: 10.13801/j.cnki.fhclxb.20221201.002
引用本文: 姬帅岩, 黄成毅, 蔡鹏麟, 等. 聚多巴胺-埃洛石纳米管改性不锈钢网及其油水分离性能[J]. 复合材料学报, 2023, 40(9): 5124-5133. doi: 10.13801/j.cnki.fhclxb.20221201.002
JI Shuaiyan, HUANG Chengyi, CAI Penglin, et al. Polydopamine-halloysite nanotubes modified stainless steel mesh and its oil-water separation performance[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5124-5133. doi: 10.13801/j.cnki.fhclxb.20221201.002
Citation: JI Shuaiyan, HUANG Chengyi, CAI Penglin, et al. Polydopamine-halloysite nanotubes modified stainless steel mesh and its oil-water separation performance[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5124-5133. doi: 10.13801/j.cnki.fhclxb.20221201.002

聚多巴胺-埃洛石纳米管改性不锈钢网及其油水分离性能

doi: 10.13801/j.cnki.fhclxb.20221201.002
详细信息
    通讯作者:

    陈晓婷,博士,副教授,研究方向为高分子复合材料 E-mail: chenxt@tust.edu.cn

  • 中图分类号: TB333

Polydopamine-halloysite nanotubes modified stainless steel mesh and its oil-water separation performance

  • 摘要: 工业含油废水的大量产生和漏油事故的频发,促使高效处理含油废水成为全球性问题。通过浸渍法将聚多巴胺(Polydopamine,PDA)和埃洛石纳米管(Halloysite nanotubes,HNTs)原位沉积在不锈钢网上,制备了超亲水/水下超疏油滤网(PDA-HNTs/SSM)并用于油水分离。利用SEM、EDS、FTIR、XRD、XPS和接触角仪表征了改性不锈钢网的表面形貌、化学组成和润湿性。结果表明,通过调整PDA与HNTs的浸渍周期可控制材料的润湿性和表面微/纳复合结构,10个浸渍周期得到的PDA-HNTs/SSM的超亲水性/水下超疏油性能最优,水下二氯甲烷接触角大于157°,滑动角小于5°。分别采用二甲苯、环己烷、正己烷、石油醚和二氯甲烷进行油水分离测试,PDA-HNTs/SSM的分离效率均大于99%,经50次循环使用后其分离效率在95.5%以上,且在浓度为1 mol/L的HCl、NaOH和NaCl溶液中静置7天或经砂纸摩擦10 m后,仍保持稳定的水下超疏油性和良好的油水分离能力。

     

  • 图  1  超亲水/水下超疏油滤网(PDA-HNTs/SSM)的制备

    Figure  1.  Fabrication of the superhydrophilic/underwater superoleophobic stainless mesh (PDA-HNTs/SSM)

    DA—Dopamine

    图  2  浸渍次数对PDA-HNTs/SSM水下油接触角与滚动角的影响

    Figure  2.  Effect of soakage times on oil contact angle and sliding angle of PDA-HNTs/SSM

    图  3  SSM的水接触角 (a)、水滴在PDA/SSM (b) 与PDA-HNTs/SSM (c) 表面的润湿过程、水下油滴在PDA/SSM (d) 和PDA-HNTs/SSM (e) 表面的表现

    Figure  3.  Water contact angle of SSM (a), water droplet wetting process on PDA/SSM (b) and PDA-HNTs/SSM (c), underwater oil droplet contact of PDA/SSM (d) and PDA-HNTs/SSM (e)

    图  4  PDA-HNTs/SSM的五种油水下油接触角和滚动角

    Figure  4.  Contact angle and sliding angle of PDA-HNTs/SSM with five kinds of oil

    图  5  不同PDA与HNTs浸渍次数下材料的SEM图像

    Figure  5.  SEM images under different soakage times of PDA and HNTs

    图  6  PDA/SSM、HNTs和PDA-HNTs/SSM的FTIR图谱 (a) 和XRD图谱 (b)

    Figure  6.  FTIR spectra (a) and XRD patterns (b) of PDA/SSM, HNTs and PDA-HNTs/SSM

    图  7  PDA-HNTs/SSM的EDS图谱

    Figure  7.  EDS spectrum of the PDA-HNTs/SSM

    图  8  SSM、PDA/SSM和PDA-HNTs/SSM的XPS图谱 (a) 和C1s (b) 图谱,PDA/SSM和PDA-HNTs/SSM的N1s (c)、O1s (d) 能谱

    Figure  8.  XPS spectra (a) and C1s spectra (b) of SSM, PDA/SSM and PDA-HNTs/SSM; N1s (c) and O1s (d) spectra of PDA/SSM and PDA-HNTs/SSM

    图  9  PDA-HNTs/SSM的油水循环分离效率(插图为SEM图像) (a)、循环后耐油入侵表现 (b)、摩擦对油接触角与分离效率的影响(插图为SEM图像) (c) 和苛刻环境下的油接触角与分离效率 (d)

    Figure  9.  Oil-water circulation separation efficiency (Inset is SEM images) (a), the performance of oil invasion resistance after circulation (b), the effect of friction on the oil contact angle and separation efficiency (Inset is SEM images) (c) and the oil contact angle and separation efficiency in harsh environments of PDA-HNTs/SSM (d)

  • [1] QIU L, ZHANG J X, GUO Z G, et al. Asymmetric superwetting stainless steel meshes for on-demand and highly effective oil-water emulsion separation[J]. Separation and Purification Technology,2021,273:118994. doi: 10.1016/j.seppur.2021.118994
    [2] LI L L, SHI Y B, HUANG Y, et al. The effect of governance on industrial wastewater pollution in China[J]. International Journal of Environmental Research and Public Health,2022,19(15):9316. doi: 10.3390/ijerph19159316
    [3] XUE Z X, WANG S T, LIN L, et al. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation[J]. Advanced Materials,2011,23(37):4270-4273. doi: 10.1002/adma.201102616
    [4] 王春莹, 齐博浩, 刘长松, 等. 可控润湿性的ZnO修饰不锈钢网的制备及其油水分离性能[J]. 复合材料学报, 2022, 39(12):5827-5834. doi: 10.13801/j.cnki.fhclxb.20220110.001

    WANG Chunying, QI Bohao, LIU Changsong, et al. Preparation of ZnO modified stainless steel mesh with controllable wettability and its oil-water separation performance[J]. Acta Materiae Compositae Sinica,2022,39(12):5827-5834(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220110.001
    [5] 陈迪, 黄杉, 杨园园, 等. 超浸润性γ-氨丙基三乙氧基硅烷-TiO2包覆织物的制备及其水净化性能[J]. 复合材料学报, 2022, 39(10):4620-4630.

    CHEN Di, HUANG Shan, YANG Yuanyuan, et al. Preparation of superwetting γ-aminopropyltriethoxysilane-TiO2 coated fabric and its water purification performances[J]. Acta Materiae Compositae Sinica,2022,39(10):4620-4630(in Chinese).
    [6] XIONG W, LI L, QIAO F, et al. Air superhydrophilic-superoleophobic SiO2-based coatings for recoverable oil/water separation mesh with high flux and mechanical stability[J]. Journal of Colloid And Interface Science,2021,600:118-126. doi: 10.1016/j.jcis.2021.05.004
    [7] LIU Z, CAO R, WEI A F, et al. Superflexible/superhydrophilic PVDF-HFP/CuO-nanosheet nanofibrous membrane for efficient microfiltration[J]. Applied Nanoscience,2019,9(8):1991-2000. doi: 10.1007/s13204-019-01014-4
    [8] ALGIERI C, DRIOLI E. Zeolite membranes: Synthesis and applications[J]. Separation and Purification Technology,2021,278:119295.
    [9] HUANG X W, ZHANG S, XIAO W, et al. Flexible PDA@ACNTs decorated polymer nanofiber composite with superhydrophilicity and underwater superoleophobicity for efficient separation of oil-in-water emulsion[J]. Journal of Membrane Science,2020,614:118500. doi: 10.1016/j.memsci.2020.118500
    [10] YANG X, HE Y, ZENG G Y, et al. Bio-inspired method for preparation of multiwall carbon nanotubes decorated superhydrophilic ploy(vinylidene fluoride) membrane for oil/water emulsion separation[J]. Chemical Engineering Journal,2017,321:245-256. doi: 10.1016/j.cej.2017.03.106
    [11] ZHANG X, ZHANG Z P, ZENG Z X, et al. Superoleophobic graphene oxide/halloysite nanotube composite membranes for oil-water separation[J]. Materials Chemistry and Physics,2021,263:124347. doi: 10.1016/j.matchemphys.2021.124347
    [12] ZHANG L, WEI K, ZENG G Y, et al. High-efficient oil/water separation membrane based on MXene nanosheets by co-incorporation of APTES and amine functionalized carbon nanotubes[J]. Journal of Environmental Chemical Engineering,2021,9(6):106658. doi: 10.1016/j.jece.2021.106658
    [13] JIN L F, PAN Q L, LI X R, et al. Preparation of three-dimensional MF/Ti3C2Tx/PmPD by interfacial polymerization for efficient hexavalent chromium removal[J]. Nanomaterials,2022,12(16):2838. doi: 10.3390/nano12162838
    [14] 高德玉, 程志林. 微波原位合成2D Ni-Fe MOF/硅藻土复合材料及其改性聚乙烯醇水凝胶不锈钢筛网油水分离性能[J]. 复合材料学报, 2023, 40(3): 1686-1695.

    GAO Deyu, CHENG Zhilin. Microwave in-situ synthesis of 2D Ni-Fe MOF/Diatomite composite and oil-water separation performance of modified polyvinyl alcohol hydrogel stainless steel screen[J]. Acta Materiae Compositae Sinica, 2023, 40(3):1686-1695(in Chinese).
    [15] 陈芬, 杜春慧, 胡锦泰, 等. MOF原位生长改性聚对氯甲基苯乙烯-聚偏氟乙烯正渗透复合膜及其对乳化油废水的抗污染性[J]. 复合材料学报, 2023, 40(4): 2075-2084.

    CHEN Fen, DU Chunhui, HU Jintai, et al. MOF in-situ growth modified poly(p-chloromethyl styrene)-polyvinylidene fluoride forward osmosis composite membrane and its anti-fouling performance for emulsified oil wastewater[J]. Acta Materiae Compositae Sinica, 2023, 40(4):2075-2084(in Chinese).
    [16] JIA Y D, GUAN K C, ZHANG P F, et al. Surface engineering with microstructured gel networks for superwetting membranes[J]. Journal of Materials Chemistry A,2021,9(12):7924-7934. doi: 10.1039/D0TA12278E
    [17] JIN Y T, HUANG L W, ZHENG K, et al. Blending electrostatic spinning fabrication of superhydrophilic/underwater superoleophobic polysulfonamide/polyvinylpyrrolidone nanofibrous membranes for efficient oil-water emulsion separation[J]. Langmuir,2022,38(27):8241-8251. doi: 10.1021/acs.langmuir.2c00640
    [18] WEI C J, LIN L G, ZHAO Y P, et al. Fabrication of pH-sensitive superhydrophilic/ underwater superoleophobic poly(vinylidene fluoride)-graft-(SiO2 nanoparticles and PAMAM Dendrimers) membranes for oil-water separation[J]. ACS Applied Materials & Interfaces,2020,12(16):19130-19139.
    [19] HUANG Q, CHEN J Y, LIU M Y, et al. Polydopamine-based functional materials and their applications in energy, environmental, and catalytic fields: State-of-the-art review[J]. Chemical Engineering Journal,2020,387:124019. doi: 10.1016/j.cej.2020.124019
    [20] LIU Z, FAN X L, HAN M Y, et al. Significantly improved interfacial properties and wave-transparent performance of PBO fibers/cyanate esters laminated composites via introducing a polydopamine/ZIF-8 hybrid membrane[J]. Composites Science and Technology,2022,223:109426. doi: 10.1016/j.compscitech.2022.109426
    [21] 吕佳帅男, 狄凯莹, 蔡鹏麟, 等. 埃洛石复配2-羧乙基苯基次膦酸对环氧树脂阻燃及力学性能的影响[J]. 复合材料学报, 2021, 38(1):120-128. doi: 10.13801/j.cnki.fhclxb.20200603.003

    LYU Jiashuainan, DI Kaiying, CAI Penglin, et al. Effects of halloysite nanotubes and 2-carboxyethyl phenylphosphonic acid on flame retardant and mechanical properties of epoxy resin[J]. Acta Materiae Compositae Sinica,2021,38(1):120-128(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200603.003
    [22] ZHAO X J, LUO Y Y, TAN P X, et al. Hydrophobically modified chitin/halloysite nanotubes composite sponges for high efficiency oil-water separation[J]. International Journal of Biological Macromolecules,2019,132:406-415. doi: 10.1016/j.ijbiomac.2019.03.219
    [23] GUO D Y, CHEN J H, HOU K, et al. A facile preparation of superhydrophobic halloysite-based meshes for efficient oil-water separation[J]. Applied Clay Science,2018,156:195-201. doi: 10.1016/j.clay.2018.01.034
    [24] GAO D Y, LIU Z, CHENG Z L. Superhydrophilic and underwater superoleophobic in-situ derived 2D Ni-Fe MOF/HNTs composite-enhanced polyvinyl alcohol (PVA) hydrogel membrane for gravity-driven oil/water separation[J]. Journal of Environmental Chemical Engineering,2022,10(3):107904. doi: 10.1016/j.jece.2022.107904
    [25] CAI P L, DI K Y, LV J S N, et al. Environmentally benign and durable superhydrophobic coatings based on short fluorocarbon chain siloxane modified halloysite nanotubes for oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,630:127540. doi: 10.1016/j.colsurfa.2021.127540
    [26] ZHANG Y, TANG A D, YANG H M, et al. Applications and interfaces of halloysite nanocomposites[J]. Applied Clay Science,2016,119(1):8-17.
    [27] YANG X, DU Y, ZHANG X, et al. Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance[J]. Langmuir,2017,33(9):2318-2324. doi: 10.1021/acs.langmuir.6b04465
    [28] XU W, XU L H, PAN H, et al. Robust ZnO/HNTs-based superhydrophobic cotton fabrics with UV shielding, self-cleaning, photocatalysis, and oil/water separation[J]. Cellulose,2022,29(7):4021-4037. doi: 10.1007/s10570-022-04462-4
    [29] CAO Y Z, LIU N, ZHANG W F, et al. One-step coating toward multifunctional applications: Oil/water mixtures and emulsions separation and contaminants adsorption[J]. ACS Applied Materials & Interfaces,2016,8(5):3333-3339.
    [30] SCHIAVON C S, MOREIRA M L, CAVA S S, et al. Wetting-state transition of random surfaces[J]. Thin Solid Films,2022,745:139102. doi: 10.1016/j.tsf.2022.139102
    [31] JU K Y, LEE Y, LEE S, et al. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property[J]. Biomacromolecules,2011,12(3):625-632. doi: 10.1021/bm101281b
    [32] ZHAO X T, JIA N, CHENG L J, et al. Dopamine-induced biomimetic mineralization for in situ developing antifouling hybrid membrane[J]. Journal of Membrane Science,2018,560:47-57. doi: 10.1016/j.memsci.2018.05.009
    [33] COY E, IATSUNSKYI I, COLMENARES J C, et al. Polydopamine films with 2D-like layered structure and high mechanical resilience[J]. ACS Applied Materials & Interfaces,2021,13(19):23113-23120.
    [34] HOU K, ZENG Y C, ZHOU C L, et al. Durable underwater superoleophobic PDDA/halloysite nanotubes decorated stainless steel mesh for efficient oil-water separation[J]. Applied Surface Science,2017,416:344-352. doi: 10.1016/j.apsusc.2017.03.302
    [35] FENG J H, CAI Y W, WANG X X, et al. Designed core-shell Fe3O4@polydopamine for effectively removing uranium(VI) from aqueous solution[J]. Bulletin of Environmental Contamination and Toxicology,2021,106(1):165-174.
    [36] WANG Z, ZHAO S J, SONG R Y, et al. The synergy between natural polyphenol-inspired catechol moieties and plant protein-derived bio-adhesive enhances the wet bonding strength[J]. Scientific Reports,2017,7(1):9664. doi: 10.1038/s41598-017-10007-8
  • 加载中
图(9)
计量
  • 文章访问数:  402
  • HTML全文浏览量:  138
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2022-11-16
  • 录用日期:  2022-11-18
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回