留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Y0.08Zr0.92O2-δ/Er0.4Bi1.6O3复合电解质的Ca3Co4O9+δ氧电极电化学性能

丁利利 张旭 吴学英 李媛 田彦婷

丁利利, 张旭, 吴学英, 等. 基于Y0.08Zr0.92O2-δ/Er0.4Bi1.6O3复合电解质的Ca3Co4O9+δ氧电极电化学性能[J]. 复合材料学报, 2023, 40(8): 4568-4576. doi: 10.13801/j.cnki.fhclxb.20221129.002
引用本文: 丁利利, 张旭, 吴学英, 等. 基于Y0.08Zr0.92O2-δ/Er0.4Bi1.6O3复合电解质的Ca3Co4O9+δ氧电极电化学性能[J]. 复合材料学报, 2023, 40(8): 4568-4576. doi: 10.13801/j.cnki.fhclxb.20221129.002
DING Lili, ZHANG Xu, WU Xueying, et al. Electrochemical performance of Ca3Co4O9+δ oxygen electrode based on Y0.08Zr0.92O2-δ/Er0.4Bi1.6O3 composite electrolyte[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4568-4576. doi: 10.13801/j.cnki.fhclxb.20221129.002
Citation: DING Lili, ZHANG Xu, WU Xueying, et al. Electrochemical performance of Ca3Co4O9+δ oxygen electrode based on Y0.08Zr0.92O2-δ/Er0.4Bi1.6O3 composite electrolyte[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4568-4576. doi: 10.13801/j.cnki.fhclxb.20221129.002

基于Y0.08Zr0.92O2-δ/Er0.4Bi1.6O3复合电解质的Ca3Co4O9+δ氧电极电化学性能

doi: 10.13801/j.cnki.fhclxb.20221129.002
基金项目: 山西省应用基础研究计划项目(20210302123111;20210302123151)
详细信息
    通讯作者:

    田彦婷,博士,副教授,硕士生导师,研究方向为固体氧化物燃料电池 E-mail:yanting_005@163.com

  • 中图分类号: TB383.1;TM911.4;TB331

Electrochemical performance of Ca3Co4O9+δ oxygen electrode based on Y0.08Zr0.92O2-δ/Er0.4Bi1.6O3 composite electrolyte

Funds: Fundamental Research Program of Shanxi Province (20210302123111; 20210302123151)
  • 摘要: 可逆固体氧化物电池(RSOCs)是一种清洁高效的能量转换和电化学存储装置,由于目前使用的钙钛矿氧电极存在Sr偏析现象,对氧电极的耐久性提出了新的要求。采用溶液浸渍法在多孔Y0.08Zr0.92O2-δ (YSZ)骨架上制备了YSZ/Er0.4Bi1.6O3 (ESB)复合电解质和Ca3Co4O9+δ (CCO)氧电极,800℃时的极化电阻为0.45 Ω·cm2。氧电极在100 h的阴、阳极交替极化过程中表现出良好的稳定性,阳极和阴极极化对电极性能具有相反的影响机制,电解模式下氧电极性能的损耗可以通过电池模式得以恢复。Ni-YSZ/YSZ/ESB/CCO单电池在800℃时的最大输出功率为722 mW·cm−2,电解电压为1.5 V时的电解电流密度为−1204 mA·cm−2,对应的产氢率为503.3 mL·cm−2·h−1,实现了较高的能量转化。

     

  • 图  1  850℃煅烧10 h后的Ca3Co4O9+δ (CCO)及CCO和Er0.4Bi1.6O3(ESB)混合粉体的XRD图谱

    Figure  1.  XRD patterns of Ca3Co4O9+δ (CCO) and CCO & Er0.4Bi1.6O3 (ESB) mixture after calcination at 850℃ for 10 h

    图  2  Y0.08Zr0.92O2-δ (YSZ)骨架、ESB隔离层和CCO氧电极的SEM图像

    Figure  2.  SEM images of Y0.08Zr0.92O2-δ (YSZ) scaffold, ESB isolating layer and CCO oxygen electrode

    图  3  CCO2、CCO4和CCO6氧电极在不同温度下的极化阻抗图谱

    Ca3Co4O9+δ oxygen electrode impregnated with 2, 4, and 6 times were labeled as CCO2, CCO4 and CCO6, respectively

    Figure  3.  Impedance spectra of CCO2, CCO4 and CCO6 oxygen electrodes at different temperatures

    图  4  CCO2、CCO4和CCO6氧电极在800°C下的极化过电位曲线

    Figure  4.  Overpotential curves of CCO2, CCO4 and CCO6 oxygen electrodes at 800°C

    图  5  CCO氧电极在±500 mA·cm−2电流密度下的极化稳定性

    Figure  5.  Durability of CCO oxygen electrode at current density of ±500 mA·cm−2

    图  6  CCO氧电极在不同阴极极化次数后的阻抗图谱 (a) 和极化过电位曲线 (b)

    Figure  6.  Impedance spectra (a) and overpotential curves (b) of CCO oxygen electrode after different cathodic polarization times

    图  7  CCO氧电极在不同阳极极化次数后的阻抗图谱 (a) 和极化过电位曲线 (b)

    Figure  7.  Impedance spectra (a) and overpotential curves (b) of CCO oxygen electrode after different anodic polarization times

    图  8  单电池 (a) 和阴极 (b) 的截面SEM图像

    Figure  8.  SEM images for the cross-section of the single cell (a) and the electrode (b)

    图  9  单电池在800°C下的固体氧化物燃料电池(SOFC) (a)和固体氧化物电解池(SOEC) (b)输出性能

    Figure  9.  Solid oxide fuel cells (SOFC) (a) and solid oxide electrolytic cells (SOEC) (b) performances of the single cell at 800°C

    表  1  基于不同制备方法的CCO电极性能

    Table  1.   Electrode performances of CCO electrode based on different preparation methods

    Synthesis conditionElectrode detailsElectrolyteT/℃Rp/(Ω·cm2)Ref.
    Sol-gel proteic synthesis 900℃/2 hScreen-printing 950℃/2 h+900℃/12 h
    CCO, 2 μm
    GDC7002.74[6]
    Solid-state reaction 800℃/10 hHand painting 850℃/5 h CCO, 20-30 μmSDC700
    800
    3.44
    0.58
    [15]
    Electrostatic spray deposition (ESD)ESD-coat ing CCO, 25-33 μmGDC7003.32 [16]
    Solid state reaction 880℃/2 hScreen-printing 900℃/1 h CCO, 30 μmGDC7004.58[16]
    Electrostatic spray deposition (ESD)ESD-coating CCO, 20 μmGDC7003.40[17]
    Solution impregnation method 850℃/5 hSolution impregnation method 850℃/5 h CCO, 30 μmYSZ/ESB700
    800
    1.15
    0.45
    This work
    Notes: GDC—Ce0.9Gd0.1O2-δ; SDC—Sm0.2Ce0.8O1.9; T—Temperature; Rp—Resistance.
    下载: 导出CSV
  • [1] GIORGIO P D, DESIDERI U. Potential of reversible solid oxide cells as electricity storage system[J]. Energies,2016,9(8):662. doi: 10.3390/en9080662
    [2] WENDEL C H, BRAUN R J. Design and techno-economic analysis of high efficiency reversible solid oxide cell systems for distributed energy storage[J]. Applied Energy,2016,172:118-131. doi: 10.1016/j.apenergy.2016.03.054
    [3] MOGENSEN M B. Materials for reversible solid oxide cells[J]. Current Opinion in Electrochemistry,2020,21:265-273. doi: 10.1016/j.coelec.2020.03.014
    [4] SHEN M, AI F, MA H, et al. Progress and prospects of reversible solid oxide fuel cell materials[J]. iScience,2021,24:103464. doi: 10.1016/j.isci.2021.103464
    [5] NAGASAWA K, DAVIERO-MINAUD S, PREUX N, et al. Ca3Co4O9-δ: A thermoelectric material for SOFC cathode[J]. Chemistry of Materials,2009,21(19):4738-4745. doi: 10.1021/cm902040v
    [6] SANTOS J, LOUREIRO F, GRILO J, et al. Understanding the cathodic polarisation behaviour of the misfit [Ca2CoO3−δ]q[CoO2] (C349) as oxygen electrode for IT-SOFC[J]. Electrochimica Acta,2018,285:214-220. doi: 10.1016/j.electacta.2018.08.018
    [7] FULGÊNCIO E B G A, LOUREIRO F J A, MELO K P V, et al. Boosting the oxygen reduction reaction of the misfit [Ca2CoO3-δ]q[CoO2] (C349) by the addition of praseodymium oxide[J]. Journal of Alloys and Compounds,2019,788:148-154. doi: 10.1016/j.jallcom.2019.02.209
    [8] ROLLE A, BOULFRAD S, NAGASAWA K, et al. Optimisation of the solid oxide fuel cell (SOFC) cathode material Ca3Co4O9-δ[J]. Journal of Power Sources,2011,196:7328-7332. doi: 10.1016/j.jpowsour.2011.02.030
    [9] WANG S F, HSU Y F, CHANG J H, et al. Characteristics of Cu and Mo-doped Ca3Co4O9-δ cathode materials for use in solid oxide fuel cells[J]. Ceramics International,2016,42(9):11239-11247. doi: 10.1016/j.ceramint.2016.04.037
    [10] YU S, ZHANG G, CHEN H, et al. A novel post-treatment to calcium cobaltite cathode for solid oxide fuel cells[J]. International Journal of Hydrogen Energy,2018,43:2436-2442. doi: 10.1016/j.ijhydene.2017.12.040
    [11] ZHU X, LUSI A, ZHU C, et al. Performance evaluation of cathode on Sm0.075Nd0.075Ce0.85O2-δ electrolyte for solid oxide fuel cells[J]. Journal of Alloys and Compounds,2017,694:877-883. doi: 10.1016/j.jallcom.2016.09.297
    [12] ARAÚJO A J M, LOUREIRO F J A, HOLZ L I V, et al. Compo-site of calcium cobaltite with praseodymium-doped ceria: A promising new oxygen electrode for solid oxide cells[J]. International Journal of Hydrogen Energy,2021,46(55):28258-28269. doi: 10.1016/j.ijhydene.2021.06.049
    [13] PIKALOVA E, KOLCHUGIN A, KOROLEVA M, et al. Functionality of an oxygen Ca3Co4O9+δ electrode for reversible solid oxide electrochemical cells based on proton-conducting electrolytes[J]. Journal of Power Sources,2019,438:226996. doi: 10.1016/j.jpowsour.2019.226996
    [14] LOUREIRO F J A, ARAUJO A J M, PASKOCIMAS C A, et al. Polarisation mechanism of the misfit Ca-cobaltite electrode for reversible solid oxide cells[J]. Electrochimica Acta,2021,373:137928. doi: 10.1016/j.electacta.2021.137928
    [15] YU S, HE S, CHEN H, et al. Effect of calcination tempera-ture on oxidation state of cobalt in calcium cobaltite and relevant performance as intermediate temperature solid oxide fuel cell cathodes[J]. Journal of Power Sources,2015,280:581-587. doi: 10.1016/j.jpowsour.2015.01.150
    [16] DJURADO E, SALAUN A, MIGNARDI G, et al. Electrostatic spray deposition of Ca3Co4O9+δ layers to be used as cathode materials for IT-SOFC[J]. Solid State Ionics,2016,286:102-110. doi: 10.1016/j.ssi.2016.01.021
    [17] BOUKAMP B A, ROLLE A, VANNIER R N, et al. Electrostatic spray deposited Ca3Co4O9+δ and Ca3Co4O9+δ/Ce0.9Gd0.1O1.95 cathodes for SOFC A compara-tive impedance analysis study[J]. Electrochimica Acta,2020,362:137142. doi: 10.1016/j.electacta.2020.137142
    [18] ANELLI S, BAIUTTI F, BERNADET L, et al. Improved mesostructured oxygen electrodes for highly performing solid oxide cells for coelectrolysis of steam and carbon dioxide[J]. Journal of Materials Chemistry A,2019,7:27458-27468. doi: 10.1039/C9TA07373F
    [19] TONG X, OVTAR S, BRODERSEN K, et al. Large-area solid oxide cells with La0.6Sr0.4CoO3-δ infiltrated oxygen electrodes for electricity generation and hydrogen production[J]. Journal of Power Sources,2020,451:227742. doi: 10.1016/j.jpowsour.2020.227742
    [20] KIM S J, CHOI M, LEE J, et al. Modifying defect structures at interfaces for high-performance solid oxide fuel cells[J]. Journal of the European Ceramic Society,2020,40(8):3089-3097. doi: 10.1016/j.jeurceramsoc.2020.03.009
    [21] JUNG D W, DUNCAN K L, WACHSMAN E D. Effect of total dopant concentration and dopant ratio on conductivity of (DyO1.5)x-(WO3)y-(BiO1.5)1−xy[J]. Acta Materialia,2010,58(2):355-363. doi: 10.1016/j.actamat.2009.08.072
    [22] BAYLISS R D, COOK S N, KOTSANTONIS S, et al. Oxygen ion diffusion and surface exchange properties of the α and δ phases of Bi2O3[J]. Advanced Energy Materials,2014,4(10):1301575. doi: 10.1002/aenm.201301575
    [23] JOH D W, PARK J H, KIM D, et al. Functionally graded bismuth oxide/zirconia bilayer electrolytes for high-performance intermediate-temperature solid oxide fuel cells (IT-SOFCs)[J]. ACS Applied Materials & Interfaces,2017,9(10):8443-8449.
    [24] HOU J, BI L, QIAN J, et al. High performance ceria-bismuth bilayer electrolyte low temperature solid oxide fuel cells (LT-SOFCs) fabricated by combining co-pressing with drop-coating[J]. Journal of Materials Chemistry A,2015,3(19):10219-10224. doi: 10.1039/C4TA06864E
    [25] DUAN N, MA J, LI J, et al. High performance cathode-unsintered solid oxide fuel cell enhanced by porous Bi1.6Er0.4O3 (ESB) interlayer[J]. International Journal of Hydrogen Energy,2018,43(28):12713-12719. doi: 10.1016/j.ijhydene.2018.03.168
    [26] WANG Z, WANG Y, YUE X, et al. Misfit-layered cobaltite Ca3Co4O9+δ as a new electrode for supercapacitor with excellent cycling stability[J]. Journal of Alloys and Compounds,2019,792:357-364. doi: 10.1016/j.jallcom.2019.04.081
    [27] HAIDER M A, MCINTOSH S. Evidence for two activation mechanisms in LSM SOFC cathodes[J]. Journal of the Electrochemical Society,2009,156:B1369-B1375. doi: 10.1149/1.3231500
    [28] JIANG S P. Activation of LSM electrode related to the potential oscillation under cathodic polarization[J]. Journal of the Electrochemical Society,2010,157:B880-B884. doi: 10.1149/1.3374407
    [29] CHEN K, LIU S S, AI N, et al. Why solid oxide cells can be reversibly operated in solid oxide electrolysis cell and fuel cell modes[J]. Physical Chemistry Chemical Physics,2015,17:31308-31315. doi: 10.1039/C5CP05065K
    [30] GRAVES C, EBBESEN S D, JENSEN S H, et al. Eliminating degradation in solid oxide electrochemical cells by reversible operation[J]. Nature Materials,2015,14:239-244. doi: 10.1038/nmat4165
    [31] HUGHES G A, YAKAL-KREMSKI K, BARNETT S A. Life testing of LSM-YSZ composite electrodes under reversing-current operation[J]. Physical Chemistry Chemical Physics,2013,15:17257-17262. doi: 10.1039/c3cp52973h
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  161
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 修回日期:  2022-11-03
  • 录用日期:  2022-11-18
  • 网络出版日期:  2022-11-30
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回