留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

球磨时间对自钝化钨合金的组织结构和抗氧化性能的影响

陈时杰 叶超 柳炜 薛丽红 周启来 尹圣铭 严有为

陈时杰, 叶超, 柳炜, 等. 球磨时间对自钝化钨合金的组织结构和抗氧化性能的影响[J]. 复合材料学报, 2023, 40(8): 4531-4538. doi: 10.13801/j.cnki.fhclxb.20221115.001
引用本文: 陈时杰, 叶超, 柳炜, 等. 球磨时间对自钝化钨合金的组织结构和抗氧化性能的影响[J]. 复合材料学报, 2023, 40(8): 4531-4538. doi: 10.13801/j.cnki.fhclxb.20221115.001
CHEN Shijie, YE Chao, LIU Wei, et al. Effect of ball milling time on microstructure and oxidation resistance of self-passivating W alloys[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4531-4538. doi: 10.13801/j.cnki.fhclxb.20221115.001
Citation: CHEN Shijie, YE Chao, LIU Wei, et al. Effect of ball milling time on microstructure and oxidation resistance of self-passivating W alloys[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4531-4538. doi: 10.13801/j.cnki.fhclxb.20221115.001

球磨时间对自钝化钨合金的组织结构和抗氧化性能的影响

doi: 10.13801/j.cnki.fhclxb.20221115.001
基金项目: 国家磁约束核聚变能发展研究专项(2018 YFE0306104);材料成形与模具技术国家重点实验室开放课题研究基金(P2023-024)
详细信息
    通讯作者:

    薛丽红,博士,副教授,硕士生导师,研究方向为功能/结构复合材料 E-mail: xuelh@hust.edu.cn

  • 中图分类号: TB331

Effect of ball milling time on microstructure and oxidation resistance of self-passivating W alloys

Funds: National MCF Energy R&D Program (2018 YFE0306104); State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (P2023-024)
  • 摘要: 自钝化W合金具有优异的抗高温氧化性能,可望用于高温环境中的关键部件。为了揭示合金的组织结构与高温抗氧化性能之间关系,采用机械合金化法结合放电等离子体烧结技术制备了自钝化W-Si合金,研究了不同机械合金化时间对合金显微组织结构的影响,并探究了合金的抗高温氧化性能。结果表明:合金由W、W5Si3和SiOx组成,当球磨时间由4 h增加到20 h,合金中SiOx的含量由16.2%增加到23.6%,而W5Si3的含量由57.8%降低到43.6%,且W和W5Si3的晶粒尺寸均减小,晶粒的细化有助于合金显微硬度的提高。在1000 ℃氧化10 h后,球磨4 h制得的合金增重为37.4 mg,而球磨20 h制得的合金增重达到了141.6 mg,它们的氧化层厚度分别约为167.0 μm和415.7 μm。球磨时间短制得的合金具有更优异的抗氧化性能,这是由于其W5Si3为连续相。W5Si3原位氧化形成的WO3/SiO2复合氧化物亦为连续相,形成了保护性氧化层,对合金的内氧化起到了有效的抑制作用。

     

  • 图  1  球磨不同时间的W-Si粉末的背散射SEM图像:(a) 4 h;(b) 20 h

    Figure  1.  Backscatter SEM images of W-Si powders ball milled for different time: (a) 4 h; (b) 20 h

    图  2  球磨4 h和20 h后的W-Si粉末的XRD图谱

    Figure  2.  XRD patterns of W-Si powders after ball milling for 4 h and 20 h

    图  3  球磨4 h和20 h的W-Si粉末制得的合金的XRD图谱

    Figure  3.  XRD patterns of the alloys made from the W-Si powders milled for 4 h and 20 h

    图  4  W-Si合金表面的背散射SEM图像 ((a1), (b1)) 和断口SEM图像 ((a2), (b2)):(a) 4 h;(b) 20 h

    A, B, C—Three different phases

    Figure  4.  Surface backscatter SEM images ((a1), (b1)) and fracture SEM images ((a2), (b2)) of the W-Si alloys: (a) 4 h;(b) 20 h

    图  5  球磨4 h和20 h的W-Si粉末制得的合金的氧化增重图

    Δm—Quality difference before and after oxidation

    Figure  5.  Oxidation mass gain of the alloys made from the W-Si powders milled for 4 h and 20 h

    图  6  W-Si合金分别氧化0 h、2 h和10 h的XRD图谱:(a) 球磨4 h;(b) 球磨20 h

    Figure  6.  XRD patterns of the W-Si alloys oxidized for 0 h, 2 h and 10 h, respectively: (a) Milled for 4 h; (b) Milled for 20 h

    图  7  W-Si合金在1000℃氧化不同时间的氧化层的SEM图像:((a1)~(a3)) 球磨4 h粉末制得的合金氧化0 h、2 h的合金表面和氧化2 h的氧化层侧表面;((b1)~(b3)) 球磨20 h粉末制得的合金氧化0 h、2 h的合金表面和氧化2 h的氧化层侧表面

    Figure  7.  SEM images of the oxide layer of the W-Si alloys oxidized for different time: ((a1)-(a3)) Alloy made from the powder milled for 4 h with surface oxidized for 0 h, 2 h and side surface oxidized for 2 h; ((b1)-(b3)) Alloy made from the powder milled for 20 h with surface oxidized for 0 h, 2 h and side surface oxidized for 2 h

    图  8  1000℃氧化2 h的W-Si合金截面的背散射SEM图像:(a) 球磨4 h粉末制得的合金;(b) 球磨20 h粉末制得的合金

    Figure  8.  Backscatter SEM images of the cross-sections of the W-Si alloys oxidized at 1000℃ for 2 h: (a) Milled for 4 h; (b) Milled for 20 h

    表  1  粉末中W的晶粒尺寸和Si在W中的固溶度

    Table  1.   Grain size of W and solid solubility of Si in W for the powders

    Ball milling time/hGrain size/nmSolid solubility/at%
    441.826.81
    2018.916.86
    下载: 导出CSV

    表  2  不同球磨时间制得的W-Si合金中各个相的面积含量

    Table  2.   Area content of each phases in the W-Si alloys prepared by different ball milling time

    W-Si alloySiOx/%W5Si3/%W/%
    Alloy made from the
    powder milled for 4 h
    16.257.826.0
    Alloy made from the
    powder milled for 20 h
    23.643.632.8
    下载: 导出CSV
  • [1] 王猛, 杨明川, 荣光, 等. 穿甲过程中钨合金杆式弹失效模式及数值模拟[J]. 稀有金属材料与工程, 2015, 44(9):2170-2174.

    WANG Meng, YANG Mingchuan, RONG Guang, et al. Failure model and numerical simulation of the tungsten alloy long rod when piercing into armor target[J]. Rare Metal Materials and Engineering,2015,44(9):2170-2174(in Chinese).
    [2] ZHOU Y, WANG K, LIU R, et al. High performance tungsten synthesized by microwave sintering method[J]. International Journal of Refractory Metals and Hard Materials,2012,34:13-17. doi: 10.1016/j.ijrmhm.2012.02.016
    [3] WANG Y J, PENG H X, ZHOU Y, et al. Influence of ZrC content on the elevated temperature tensile properties of ZrCp/W composites[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2011,528(3):1805-1811. doi: 10.1016/j.msea.2010.11.029
    [4] 蔡圳阳, 沈鸿泰, 刘赛男, 等. 难熔金属合金及其高温抗氧化涂层研究现状与展望[J]. 中国有色金属学报, 2020, 30(9):1991-2010. doi: 10.11817/j.ysxb.1004.0609.2020-37623

    CAI Zhenyang, SHEN Hongtai, LIU Sainan, et al. Review and prospect of refractory metal alloys and high tempera-ture oxidation resistance coatings[J]. The Chinese Journal of Nonferrous Metals,2020,30(9):1991-2010(in Chinese). doi: 10.11817/j.ysxb.1004.0609.2020-37623
    [5] LV Y Q, FAN Y, ZHAO S Q, et al. The microstructure evolution, damage behavior and failure analysis of fine-grained W-Y2O3 composites under high transient thermal shock[J]. International Journal of Refractory Metals and Hard Materials,2022,107:105905. doi: 10.1016/j.ijrmhm.2022.105905
    [6] MAISONNIERR D, COOK I, PIERRE S, et al. The European power plant conceptual study[J]. Fusion Engineering and Design,2005,75-79:1173-1179.
    [7] 谭晓月, 王武杰, 吴眉, 等. 自钝化钨合金在未来核聚变装置中的潜在应用与研究现状[J]. 材料热处理学报, 2019, 40(11):13-21.

    TAN Xiaoyue, WANG Wujie, WU Mei, et al. Potential application and research status of self-passivation tungsten alloy in future fusion devices[J]. Transactions of Materials and Heat Treatment,2019,40(11):13-21(in Chinese).
    [8] TERENTYEV D, JENUS P, SAL E, et al. Development of irradiation tolerant tungsten alloys for high temperature nuclear applications[J]. Nuclear Fusion,2022,62(8):086035. doi: 10.1088/1741-4326/ac75fe
    [9] WEBB W W, NORTON J T, WAGNER C. Oxidation of tungsten[J]. Journal of the Electrochemical Society,1956,103(2):107-111. doi: 10.1149/1.2430238
    [10] BLACKBURN P E, ANDREW K F, GULBRANSEN E A, et al. Oxidation of tungsten and tungsten based alloys[R]. Arlington: Aemed Services Technical Information Agency, 1961.
    [11] CIFUENTES S C, MONGE M A, PÉREZ P. On the oxidation mechanism of pure tungsten in the temperature range 600-800℃[J]. Corrosion Science,2012,57:114-121. doi: 10.1016/j.corsci.2011.12.027
    [12] KOCH F, BOLT H. Self-passivating W-based alloys as plasma facing material for nuclear fusion[J]. Revstat-Statistical Journal,2007,T128:100-105.
    [13] WU B D, YANG X S, ZHOU Y Z, et al. Laser melting depo-sited self-passivating 90 W-10 Cr coatings on reduced activation ferritic/martensitic steel using 90 W-7 Ni-3 Fe interlayers[J]. Journal of Nuclear Materials,2021,553:153029. doi: 10.1016/j.jnucmat.2021.153029
    [14] YAN J, LI X, WANG Z L, et al. Comparison of surface morphologies and helium retention of nanocrystalline W and W-Cr films prepared by magnetron sputtering[J]. Nuclear Materials and Energy,2020,22:100733. doi: 10.1016/j.nme.2020.100733
    [15] KLEIN F, GILBERT M R, LITNOVSKY A, et al. Tungsten-chromium-yttrium alloys as first wall armor material: Yttrium concentration, oxygen content and transmutation elements[J]. Fusion Engineering and Design,2020,158:111667. doi: 10.1016/j.fusengdes.2020.111667
    [16] MACKOVA A, FERNANDES S, MATEJICEK J, et al. Radiation damage evolution in pure W and W-Cr-Hf alloy caused by 5 MeV Au ions in a broad range of DPA[J]. Nuclear Materials and Energy,2021,29:101085. doi: 10.1016/j.nme.2021.101085
    [17] CALVO A, GARCIA-ROSALES C, KOCH F, et al. Manufacturing and testing of self-passivating tungsten alloys of different composition[J]. Nuclear Materials and Energy,2016,9(C):422-429.
    [18] LITNOVSKY A, WEGENER T, KLEIN F, et al. Advanced smart tungsten alloys for a future fusion power plant[J]. Plasma Physics and Controlled Fusion,2017,59(6):064003.
    [19] WEGENER T, KLEIN F, LITNOYSKY A, et al. Development and analyses of self-passivating tungsten alloys for DEMO accidental conditions[J]. Fusion Engineering and Design,2017,124:183-186. doi: 10.1016/j.fusengdes.2017.03.072
    [20] LIU W, DI J, ZHANG W X, et al. Oxidation resistance behavior of smart W-Si bulk composites[J]. Corrosion Science,2022,163:108222.
    [21] 柳炜. 面向等离子体自钝化W-Si合金的制备与性能研究[D]. 武汉: 华中科技大学, 2020.

    LIU Wei. Preparation and properties of self-passivating tungsten-silicon alloys for plasma facin[D]. Wuhan: Huazhong University of Science and Technology, 2020(in Chinese).
    [22] 韩勇, 范景莲, 刘涛, 等. 球磨改性和表面活性剂添加对超细98 W-1 Ni-1 Fe粉末性能的影响[J]. 中国有色金属学报, 2012, 22(12):3409-3415.

    HAN Yong, FAN Jinglian, LIU Tao, et al. Effect of ball milling modification and surfactant addition on properties of ultrafine 98 W-1 Ni-1 Fe powder[J]. The Chinese Jour-nal of Nonferrous Metals,2012,22(12):3409-3415(in Chinese).
    [23] OKAMOTO H. Supplemental literature review of binary phase diagrams: Al-Mg, Bi-Sr, Ce-Cu, Co-Nd, Cu-Nd, Dy-Pb, Fe-Nb, Nd-Pb, Pb-Pr, Pb-Tb, Pd-Sb, and Si-W[J]. Jour-nal of Phase Equilibria and Diffusion, 2015, 36: 183-195.
    [24] LIU W, DI J, XUE L H, et al. Phase evolution progress and properties of W-Si composites prepared by spark plasma sintering[J]. Journal of Alloys and Compounds,2018,766:739-747. doi: 10.1016/j.jallcom.2018.07.038
    [25] GULBRANSEN E A, ANDREW K F. Kinetics of the oxidation of pure tungsten from 500° to 1300 ℃[J]. Journal of the Electrochemical Society,1960,107(7):619-628. doi: 10.1149/1.2427787
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  667
  • HTML全文浏览量:  378
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 修回日期:  2022-11-07
  • 录用日期:  2022-11-10
  • 网络出版日期:  2022-11-17
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回