留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维素纳米晶手性模板的研究进展

邓艳梅 支云飞 陕绍云 胡帅 张楚茹

邓艳梅, 支云飞, 陕绍云, 等. 纤维素纳米晶手性模板的研究进展[J]. 复合材料学报, 2023, 40(4): 1981-1991. doi: 10.13801/j.cnki.fhclxb.20221030.001
引用本文: 邓艳梅, 支云飞, 陕绍云, 等. 纤维素纳米晶手性模板的研究进展[J]. 复合材料学报, 2023, 40(4): 1981-1991. doi: 10.13801/j.cnki.fhclxb.20221030.001
DENG Yanmei, ZHI Yunfei, SHAN Shaoyun, et al. Progress of study on cellulose nanocrystals as chiral templates[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1981-1991. doi: 10.13801/j.cnki.fhclxb.20221030.001
Citation: DENG Yanmei, ZHI Yunfei, SHAN Shaoyun, et al. Progress of study on cellulose nanocrystals as chiral templates[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1981-1991. doi: 10.13801/j.cnki.fhclxb.20221030.001

纤维素纳米晶手性模板的研究进展

doi: 10.13801/j.cnki.fhclxb.20221030.001
基金项目: 国家自然科学基金(52163003;21766016;22068023;202307AC110001);云南省“万人计划”基金(YNWR-QNBJ-2018-198);昆明市科学技术局科技计划基金(2019-1-G-25318000003480);昆明市科学技术局科技创新要素聚集计划重点项目(2019-1-A-24657);云南省基础研究计划青年项目(202001AU070023);云南省大学生创新创业计划国家级项目(201910674032);云南省后备人才项目(2015HB014)
详细信息
    通讯作者:

    支云飞,博士,副教授,硕士生导师,研究方向为催化新材料与新技术 E-mail: zyf891123@163.com

    陕绍云,博士,教授,博士生导师,研究方向为绿色高分子材料 E-mail: shansy411@163.com

  • 中图分类号: TQ352

Progress of study on cellulose nanocrystals as chiral templates

Funds: National Natural Science Foundation of China (52163003; 21766016; 22068023; 202307AC110001); Yunnan Province "Ten Thousand People Plan" Fun (YNWR-QNBJ-2018-198); Science and Technology Program Fund of Kunming Science and Technology Bureau (2019-1-G-25318000003480); Key Projects of Science and Technology Innovation Factor Gathering Plan of Kunming Science and Technology Bureau (2019-1-A-24657); Youth Project of Yunnan Basic Research Program (202001AU070023); National Project of Yunnan University Students' Innovation and Entrepreneurship Program (201910674032); Reserve Talent Project of Yunnan Province (2015HB014)
  • 摘要: 纤维素纳米晶(CNC)是由酸水解天然纤维素制得的具有高结晶度的一种纳米材料,CNC通过蒸发诱导自组装(EISA)能形成具有手性向列液晶相的虹彩薄膜。CNC制备工艺简单,具有生物可持续性和固有的手性向列结构,CNC的手性向列结构表现出特有的光学特性,以CNC为手性模板与聚合物或无机材料共组装可制得先进光学材料,在传感器、光电器件和智能显示等领域具有广阔的应用前景。本文介绍了CNC的制备、手性向列结构的形成及其作为模板的研究,简要综述了近年来CNC在制备有序介孔材料、功能纳米复合膜和新型光学材料领域的应用现状。最后,总结了基于目前CNC手性材料制备和应用存在的一些问题,以期为今后手性材料的应用研究提供参考。

     

  • 图  1  制备纤维素液晶膜的示意图[5]:(a) 绿树;(b) 纤维素纤维;(c) 纤维素的结晶和非晶区;(d) 纤维素的分子结构;(e) 纤维素纳米晶 (CNC)的AFM图像;(f) CNC扭曲螺旋状外观;(g) 硫酸水解后CNC的分子结构;(h) 蒸发诱导自组装 (EISA)之前的CNC悬浮液;(i) EISA之后的CNC内部排列;(j) EISA后的纤维素液晶薄膜

    Figure  1.  Schematic diagram of preparing cellulose liquid crystal film[5]: (a) Green trees; (b) Cellulose fiber; (c) Crystalline and amorphous regions of cellulose; (d) Molecular structure of cellulose; (e) AFM image of cellulose nanocrystals (CNC); (f) Twisted spiral appearance of CNC; (g) Molecular structure of CNC after sulfuric acid hydrolysis; (h) Picture of CNC suspension before evaporation-induced self-assembly (EISA); (i) Internal CNC arrangement after EISA; (j) Picture of cellulose liquid crystal film after EISA

    图  2  CNC作模板合成介孔材料的工艺流程[21]

    Figure  2.  Process steps of mesoporous materials with CNC as template[21]

    图  3  掺镧介孔碳材料(MC-La)合成示意图[26]

    Figure  3.  Schematic of La-doped mesoporous carbon materials (MC-La)[26]

    图  4  CNC与带电金纳米棒(GNRs)混合的胶体悬浮液制备手性等离子体杂化膜[33]

    Figure  4.  Schematic of the chiral plasmonic hybrid films prepared by mixing colloidal suspensions of CNC and charged gold nanorods (GNRs)[33]

    图  5  手性荧光聚乙二醇(PEG)-CNC-谷胱甘肽(GSH)-铜纳米团簇(CuNCs)复合薄膜的自组装过程[37]

    Figure  5.  Self-assembly of chiral fluorescent polyethylene glycol (PEG)-CNC-glutathione (GSH)-copper nanoclusters (CuNCs) composite films[37]

    图  6  在HCl蒸汽条件下,CNC与戊二醛(GA)通过EISA交联形成导电聚合物和金属氧化物的模板[39]

    Figure  6.  Preparation template of conductive polymer and metal oxide formed by cross-linking of CNC with glutaraldehyde (GA) through EISA under the condition of HCl vapor[39]

    图  7  GA交联CNC/聚乙烯醇(PVA)薄膜的制备过程示意图(a)和CNC ((b), (e), (h))、 CNC/PVA-70∶30 ((c), (f), (i)) 和CNC/PVA-GA ((d), (g), (j)) 薄膜的照片 ((b)~(d))、截面SEM图像 ((e)~(g))、偏振光学显微镜(POM)图像 ((h)~(j))[12]

    Figure  7.  Schematic illustration of the preparation process of GA cross-linked CNC/polyvinyl alcohol (PVA) film (a) and photographs ((b)-(d)), cross-sectional SEM images ((e)-(g)), and polarized optical microscopy (POM) images ((h)-(j)) of CNC((b), (e), (h)), CNC/PVA-70∶30 ((c), (f), (i)), and CNC/PVA-GA ((d), (g), (j)) films[12]

    图  8  荧光光子晶体膜的形成过程, [N-(3-N-苄基-N,N-二甲基丙基氯化铵)-1,8-萘酰亚胺]联氨(ANH)和PEG在CNC表面的组装及CNC在溶剂蒸发过程中定向有序形成液晶膜[46]

    Figure  8.  Formation process of the fluorescent photonic crystal membranes, including the assembly of [N-(3-N-benzyl-N,N-dimethyl-propyl ammonium chloride)-1,8-naphthalimide] hydrazine (ANH) and PEG on the CNC surface and the orientational order of CNC during the solvent evaporation to form liquid crystal membranes[46]

    P/2—Half-helical pitch

    图  9  CNC手性向列光学复合膜的制备示意图,将CNC与葡萄糖、甘油和PVA共同组装,显示出对不同湿度(RH)的智能响应[48]

    Figure  9.  Schematic diagram of CNC chiral nematic optical composite film preparation showing an intelligent response to different humidity (RH) by co-assembling CNC with glucose, glycerol and PVA[48]

  • [1] REVOL J F, GODBOUT L, GRAY D G. Solid self-assembled films of cellulose with chiral nematic order and optically variable properties[J]. Journal of Pulp and Paper Science,1998,24(5):146-149.
    [2] KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by liquid-crystal template mechanism[J]. Nature,1992,359(6357):710-712. doi: 10.1038/359710a0
    [3] REVOL J F, BRADFORD H, GIASSON J, et al. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension[J]. International Journal of Biological Macromolecules,1992,14(3):170-172. doi: 10.1016/S0141-8130(05)80008-X
    [4] MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites[J]. Chemical Society Reviews,2011,40(7):3941-3994. doi: 10.1039/c0cs00108b
    [5] DUAN C L, CHENG Z, WANG B, et al. Chiral photonic liquid crystal films derived from cellulose nanocrystals[J]. Small,2021,17(30):e2007306. doi: 10.1002/smll.202007306
    [6] YOSHIYUKI N, JUNICHI S, KAZUKI S. Liquid crystals of cellulosics: Fascinating ordered structures for the design of functional material systems[J]. Advances in Polymer Science, 2015, 271: 241-286.
    [7] TRAN A, BOOTT C E, MACLACHLAN M J. Understanding the self-assembly of cellulose nanocrystals-toward chiral photonic materials[J]. Advanced Materials,2020,32(41):1905876. doi: 10.1002/adma.201905876
    [8] LV P F, LU X M, WANG L, et al. Nanocellulose-based functional materials: From chiral photonics to soft actuator and energy storage[J]. Advanced Functional Materials,2021,31(45):2104991. doi: 10.1002/adfm.202104991
    [9] REVOL J F, GODBOUT L, DONG X M, et al. Chiral nematic suspensions of cellulose[M]. Cambridge: Woodhead Publishing, 1995: 373-380.
    [10] LAMM M E, LI K, QIAN J, et al. Recent advances in functional materials through cellulose nanofiber templating[J]. Advanced Materials,2021,33(12):2005538. doi: 10.1002/adma.202005538
    [11] MESECK G R, TERPSTRA A S, MACLACHLAN M J. Liquid crystal templating of nanomaterials with nature's toolbox[J]. Current Opinion in Colloid & Interface Science,2017,29:9-20. doi: 10.1016/j.cocis.2017.01.003
    [12] ZHANG F S, GE W N, WANG C L, et al. Highly strong and solvent-resistant cellulose nanocrystal photonic films for optical coatings[J]. ACS Applied Materials & Interfaces,2021,13(14):17118-17128.
    [13] ZHAO B, YU H L, PAN K, et al. Multifarious chiral nanoarchitectures serving as handed-selective fluorescence filters for generating full-color circularly polarized luminescence[J]. ACS Nano,2020,14(3):3208-3218. doi: 10.1021/acsnano.9b08618
    [14] ZHANG R L, LIU Y. High energy oxidation and organosolv solubilization for high yield isolation of cellulose nanocrystals (CNC) from Eucalyptus hardwood[J]. Scientific Reports,2018,8(1):16505. doi: 10.1038/s41598-018-34667-2
    [15] GIESE M, KHAN M K, HAMAD W Y, et al. Imprinting of photonic patterns with thermosetting amino-formaldehyde-cellulose composites[J]. ACS Macro Letters,2013,2(9):818-821. doi: 10.1021/mz4003722
    [16] TERPSTRA A S, HAMAD W Y, MACLACHLAN M J. Photopatterning freestanding chiral nematic mesoporous organosilica films[J]. Advanced Functional Materials,2017,27(45):1703346.
    [17] HAMAD W Y. Photonic and semiconductor materials based on cellulose nanocrystals[M]. Heidelberg: Springer International Publishing, 2015: 287-328.
    [18] KELLY J A, GIESE M, SHOPSOWITZ K E, et al. The development of chiral nematic mesoporous materials[J]. Accounts of Chemical Research,2014,47(4):1088-1096. doi: 10.1021/ar400243m
    [19] WANG P X, HAMAD W Y, MACLACHLAN M J. Polymer and mesoporous silica microspheres with chiral nematic order from cellulose nanocrystals[J]. Angewandte Chemie International Edition,2016,55(40):12460-12464. doi: 10.1002/anie.201606283
    [20] WANG C, PAINEAU E, REMITA H, et al. Cellulose nanocrystals in spherical titania-sol microdroplet: From dynamic self-assembly to nanostructured TiOx/C microsphere synthesis[J]. Chemistry of Materials,2021,33(17):6925-6933. doi: 10.1021/acs.chemmater.1c01865
    [21] GIESE M, BLUSCH L K, KHAN M K, et al. Functional materials from cellulose-derived liquid-crystal templates[J]. Angewandte Chemie International Edition,2015,54(10):2888-2910. doi: 10.1002/anie.201407141
    [22] SHOPSOWITZ K E, QI H, HAMAD W Y, et al. Free-standing mesoporous silica films with tunable chiral nematic structures[J]. Nature,2010,468(7322):422-425. doi: 10.1038/nature09540
    [23] SHOPSOWITZ K E, HAMAD W Y, MACLACHLAN M J. Chiral nematic mesoporous carbon derived from nanocrystalline cellulose[J]. Angewandte Chemie International Edition,2011,50(46):10991-10995. doi: 10.1002/anie.201105479
    [24] SHOPSOWITZ K E, STAHL A, HAMAD W Y, et al. Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering[J]. Angewandte Chemie International Edition,2012,51(28):6886-6890. doi: 10.1002/anie.201201113
    [25] LIU E X, CHEN L, DAI J D, et al. Fabrication of phosphate functionalized chiral nematic mesoporous silica films for the efficient and selective adsorption of lanthanum ions[J]. Journal of Molecular Liquids,2019,277:786-793. doi: 10.1016/j.molliq.2019.01.032
    [26] WANG Y Y, YANG X Y, JING X, et al. Adsorption of phosphorus on lanthanum doped carbon films guided by self-assembly of cellulose nanocrystalline[J]. Journal of Molecular Liquids,2020,319:114148. doi: 10.1016/j.molliq.2020.114148
    [27] ZHANG F S, ZHENG X T, WANG C L, et al. Synthesis of optically active chiral mesoporous molybdenum carbide film[J]. Journal of Industrial and Engineering Chemistry,2021,94:482-488. doi: 10.1016/j.jiec.2020.11.023
    [28] WALTERS C M, ADAIR K R, HAMAD W Y, et al. Synthesis of chiral nematic mesoporous metal and metal oxide nanocomposites and their use as heterogeneous catalysts[J]. European Journal of Inorganic Chemistry,2020,2020(41):3937-3943. doi: 10.1002/ejic.202000673
    [29] LENG J X, LI G H, JI X X, et al. Flexible latex photonic films with tunable structural colors templated by cellulose nanocrystals[J]. Journal of Materials Chemistry C,2018,6(9):2396-2406. doi: 10.1039/C7TC05523D
    [30] HU S, ZHI Y F, SHAN S Y, et al. Research progress of smart response composite hydrogels based on nanocellulose[J]. Carbohydrate Polymers,2022,275:118741. doi: 10.1016/j.carbpol.2021.118741
    [31] TEODORO K B R, SANFELICE R C, MIGLIORINI F L, et al. A review on the role and performance of cellulose nanomaterials in sensors[J]. ACS Sensors,2021,6(7):2473-2496. doi: 10.1021/acssensors.1c00473
    [32] SUN J J, JI X X, LI G H, et al. Chiral nematic latex-GO composite films with synchronous response of color and actuation[J]. Journal of Materials Chemistry C,2019,7(1):104-110. doi: 10.1039/C8TC04319A
    [33] CHENG Z, MA Y, YANG L, et al. Plasmonic-enhanced cholesteric films: Coassembling anisotropic gold nanorods with cellulose nanocrystals[J]. Advanced Optical Materials,2019,7(9):1801816. doi: 10.1002/adom.201801816
    [34] MAJOINEN J, HASSINEN J, HAATAJA J S, et al. Chiral plasmonics using twisting along cellulose nanocrystals as a template for gold nanoparticles[J]. Advanced Materials,2016,28(26):5262-5267. doi: 10.1002/adma.201600940
    [35] CHAKRABORTY A, NONAPPA, MONDAL B, et al. Near-infrared chiral plasmonic microwires through precision assembly of gold nanorods on soft biotemplates[J]. The Journal of Physical Chemistry C,2021,125(5):3256-3267. doi: 10.1021/acs.jpcc.0c11512
    [36] LIU L, WANG L J, LUO S, et al. Chiral nematic assemblies of silver nanoparticles in cellulose nanocrystal membrane with tunable optical properties[J]. Journal of Materials Science,2019,54(8):6699-6708. doi: 10.1007/s10853-019-03321-1
    [37] LIU M Y, KUANG K X, LI G H, et al. Photoluminescence-enhanced cholesteric films: Coassembling copper nanoclusters with cellulose nanocrystals[J]. Carbohydrate Polymers,2021,257(3):117641.
    [38] GIESE M, BLUSCH L K, KHAN M K, et al. Responsive mesoporous photonic cellulose films by supramolecular cotemplating[J]. Angewandte Chemie International Edition,2014,53(34):8880-8884. doi: 10.1002/anie.201402214
    [39] HANIF Z, CHOI D, TARIQ M Z, et al. Water-stable flexible nanocellulose chiral nematic films through acid vapor cross-linked glutaraldehyde for chiral nematic templating[J]. ACS Macro Letters,2020,9(2):146-151. doi: 10.1021/acsmacrolett.9b00826
    [40] CHEN H H, HOU A Q, ZHENG C W, et al. Light- and humidity-responsive chiral nematic photonic crystal films based on cellulose nanocrystals[J]. ACS Applied Materials & Interfaces,2020,12(21):24505-24511. doi: 10.1021/acsami.0c05139
    [41] SANTOS M V, MATURI F E, PECORARO D, et al. Cellulose based photonic materials displaying direction modulated photoluminescence[J]. Frontiers in Bioengineering and Biotechnology,2021,9:617328. doi: 10.3389/fbioe.2021.617328
    [42] YANG N, JI X X, SUN J J, et al. Photonic actuators with predefined shapes[J]. Nanoscale,2019,11(20):10088-10096. doi: 10.1039/C9NR02294E
    [43] LI C X, WANG N, EVANS J, et al. Achromatic optical waveplates based on cellulose nanocrystals[J]. Cellulose,2021,28(11):6983-6993. doi: 10.1007/s10570-021-03996-3
    [44] SHAO R R, MENG X, SHI Z J, et al. Marangoni flow manipulated concentric assembly of cellulose nanocrystals[J]. Small Methods,2021,5(11):e2100690. doi: 10.1002/smtd.202100690
    [45] CHENG Q Y, GUO J H, CAO X D, et al. The digital printing of chromatic pattern with a single cellulose nanocrystal ink[J]. Chemical Engineering Journal,2022,439:135670. doi: 10.1016/j.cej.2022.135670
    [46] HOU A Q, CHEN H H, ZHENG C W, et al. Assembly of a fluorescent chiral photonic crystal membrane and its sensitive responses to multiple signals induced by small molecules[J]. ACS Nano,2020,14(6):7380-7388. doi: 10.1021/acsnano.0c02883
    [47] WANG Z L, DENG Z P, DONG X, et al. A surface diffusion barrier strategy toward water-resistant photonic materials for accurate detection of ethanol[J]. ACS Applied Materials & Interfaces,2022,14(26):30352-30361.
    [48] YU Z L, WANG K D, LU X N. Flexible cellulose nanocrystal-based bionanocomposite film as a smart photonic material responsive to humidity[J]. International Journal of Biological Macromolecules,2021,188:385-390. doi: 10.1016/j.ijbiomac.2021.08.049
    [49] MENG Y H, LONG Z, HE Z B, et al. Chiral cellulose nanocrystal humidity-responsive iridescent films with glucan for tuned iridescence and reinforced mechanics[J]. Biomacromolecules,2021,22(11):4479-4488. doi: 10.1021/acs.biomac.1c00595
    [50] CHANG T, WANG B C, YUAN D, et al. Cellulose nanocrystal chiral photonic micro-flakes for multilevel anti-counterfeiting and identification[J]. Chemical Engineering Journal,2022,446(1):136630.
    [51] WANG C X, TANG C M, WANG Y F, et al. Chiral photonic materials self-assembled by cellulose nanocrystals[J]. Current Opinion in Solid State & Materials Science,2022,26(5):101017.
  • 加载中
图(9)
计量
  • 文章访问数:  941
  • HTML全文浏览量:  650
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 修回日期:  2022-10-06
  • 录用日期:  2022-10-22
  • 网络出版日期:  2022-10-31
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回