留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同热震工况下2.5D编织SiCf/SiC陶瓷基复合材料力学性能及损伤

段宏宇 王贺权 张佳平 郑伟 陈婧

段宏宇, 王贺权, 张佳平, 等. 不同热震工况下2.5D编织SiCf/SiC陶瓷基复合材料力学性能及损伤[J]. 复合材料学报, 2023, 40(7): 4184-4194. doi: 10.13801/j.cnki.fhclxb.20221011.002
引用本文: 段宏宇, 王贺权, 张佳平, 等. 不同热震工况下2.5D编织SiCf/SiC陶瓷基复合材料力学性能及损伤[J]. 复合材料学报, 2023, 40(7): 4184-4194. doi: 10.13801/j.cnki.fhclxb.20221011.002
DUAN Hongyu, WANG Hequan, ZHANG Jiaping, et al. Mechanical properties and damage of 2.5D braided SiCf/SiC ceramic matrix composites under different thermal shock conditions[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4184-4194. doi: 10.13801/j.cnki.fhclxb.20221011.002
Citation: DUAN Hongyu, WANG Hequan, ZHANG Jiaping, et al. Mechanical properties and damage of 2.5D braided SiCf/SiC ceramic matrix composites under different thermal shock conditions[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4184-4194. doi: 10.13801/j.cnki.fhclxb.20221011.002

不同热震工况下2.5D编织SiCf/SiC陶瓷基复合材料力学性能及损伤

doi: 10.13801/j.cnki.fhclxb.20221011.002
基金项目: 辽宁省航发材料摩擦学重点实验室开放课题(LKLAMTF202204)
详细信息
    通讯作者:

    王贺权,博士,教授,硕士生导师,研究方向为真空装备与涂层技术 E-mail:neuwhq@163.com

  • 中图分类号: TB332

Mechanical properties and damage of 2.5D braided SiCf/SiC ceramic matrix composites under different thermal shock conditions

Funds: Open Project of Liaoning Key Laboratory of Aero-engine Materials Tribology (LKLAMTF202204)
  • 摘要: 通过单向拉伸和三点弯曲实验,并结合SEM和EDS分析不同热震工况(次数)下对2.5D编织SiCf/SiC (f表示纤维)陶瓷基复合材料(CMCs)力学性能和损伤的影响。结果表明:2.5D编织SiCf/SiC CMCs在室温无热震和1200℃不同热震工况下的拉伸应力-应变曲线呈现非线性变化,随着热震次数的增加,拉伸强度先逐渐降低,然后小幅度增加,材料在热震10次下的拉伸强度降到48.39%,热震30次后增加到54.11%;材料在室温无热震和1200℃不同热震工况下的三点弯曲位移-载荷曲线也呈现非线性变化,随着热震次数的增加,弯曲强度迅速降低,材料在热震10次下的弯曲强度迅速降到26.06%,热震30次后降到10.77%。从宏观断口分析可知,材料在室温无热震下拉伸、弯曲断口表现为伪脆性断裂特性,而在热震工况下拉伸和弯曲断口则表现出韧性断裂特性。从微观断口观察有纤维拔出、纤维脱粘、界面脱粘、裂纹扩展和纤维断裂等损伤行为,且随着热震次数的增多,界面结合力逐渐减弱,上述等损伤行为均显著增加。

     

  • 图  1  热震实验设备及示意图

    Figure  1.  Thermal shock experimental equipment and schematic diagram

    图  2  2.5D SiCf/SiC (f 表示纤维)陶瓷基复合材料(CMCs)单向拉伸应力-应变曲线

    Figure  2.  Uniaxial tensile stress-strain curve of 2.5D SiCf/SiC (f represents fiber) ceramic matrix composites (CMCs)

    F—Force

    图  3  2.5D编织SiCf/SiC CMCs单向拉伸断口局部SEM形貌图及示意图

    Figure  3.  Local SEM images and schematic diagram of uniaxial tensile fracture of 2.5D braided SiCf/SiC CMCs

    图  4  2.5D编织SiCf/SiC CMCs单向拉伸宏观断口形貌

    Figure  4.  Macroscopic fracture morphologies of 2.5D braided SiCf/SiC CMCs under uniaxial tension

    图  5  2.5D SiCf/SiC CMCs三点弯曲位移-载荷曲线

    Figure  5.  Three-point bending displacement-load curves of 2.5D SiCf/SiC CMCs

    图  6  2.5D编织SiCf/SiC CMCs 1200℃热震10次三点弯曲断口局部SEM图像

    Figure  6.  Local SEM image of 2.5D braided SiCf/SiC CMCs with 10 thermal shocks at 1200℃ and three-point bending fracture

    图  7  2.5D编织SiCf/SiC CMCs三点弯曲宏观断口形貌

    Figure  7.  Three-point bending macroscopic fracture morphologies of 2.5D braided SiCf/SiC CMCs

    图  8  2.5D编织SiCf/SiC CMCs三点弯曲断口整体SEM图像

    Figure  8.  Overall SEM images of three-point bending fracture of 2.5D braided SiCf/SiC CMCs

    图  9  2.5D SiCf/SiC CMCs不同热震次数的拉伸和弯曲强度保持率曲线

    Figure  9.  Tensile and flexural strength retention curves of 2.5D SiCf/SiC CMCs with different thermal shock times

    表  1  2.5D SiCf/SiC CMCs单向拉伸断口纤维表面EDS元素分析

    Table  1.   Uniaxial tensile fracture fiber surface EDS element analysis of 2.5D SiCf/SiC CMCs

    Working condition$ \omega $/%
    SiO
    No thermal shock at room temperature83.03 0
    1200℃ thermal shock 10 times67.5710.59
    1200℃ thermal shock 30 times75.76 2.03
    Note: $ \omega $—Percentage of the element content in the total element content.
    下载: 导出CSV

    表  2  2.5D SiCf/SiC CMCs三点弯曲断口纤维表面EDS元素分析

    Table  2.   Three-point bending fracture fiber surface EDS element analysis of 2.5D SiCf/SiC CMCs

    Working condition$ \omega $/%
    SiO
    No thermal shock at room temperature85.01 0
    1200℃ thermal shock 10 times67.8017.40
    1200℃ thermal shock 20 times61.5823.05
    1200℃ thermal shock 30 times74.5216.62
    下载: 导出CSV
  • [1] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. doi: 10.3321/j.issn:1000-3851.2007.02.001

    ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.02.001
    [2] 高铁, 洪智亮, 杨娟. 商用航空发动机陶瓷基复合材料部件的研发应用及展望[J]. 航空制造技术, 2014(6):14-21. doi: 10.3969/j.issn.1671-833X.2014.06.002

    GAO Tie, HONG Zhiliang, YANG Juan. Application and prospect of ceramic matrix composite components for commercial aircraft engines[J]. Aeronautical Manufacturing Technology,2014(6):14-21(in Chinese). doi: 10.3969/j.issn.1671-833X.2014.06.002
    [3] 张曦挚, 崔红, 胡杨, 等. 低成本PIP工艺制备陶瓷基复合材料研究进展[J]. 航空制造技术, 2022, 65(13):110-116. doi: 10.16080/j.issn1671-833x.2022.13.110

    ZHANG Xizhi, CUI Hong, HU Yang, et al. Research development on low-cost ceramic-matrix composites by polymer infiltration pyrolysis[J]. Aeronautical Manufacturing Technology,2022,65(13):110-116(in Chinese). doi: 10.16080/j.issn1671-833x.2022.13.110
    [4] 杨博, 余金山, 顾全超, 等. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3):3050-3056. doi: 10.11896/cldb.19120251

    YANG Bo, YU Jinshan, GU Quanchao, et al. Research progress on preparation of SiCf/SiC composite[J]. Materials Reports,2021,35(3):3050-3056(in Chinese). doi: 10.11896/cldb.19120251
    [5] YAO J J, PANG S Y, HU C L, et al. Mechanical, oxidation and ablation properties of C/(C-SiC)CVI-(ZrC-SiC)PIP composites[J]. Corrosion Science,2020,162:108200. doi: 10.1016/j.corsci.2019.108200
    [6] 孟志新, 罗磊, 陈婧旖, 等. 纤维丝束大小对Mini-C/SiC拉伸性能与强度分布的影响[J]. 当代化工, 2021, 50(8):1810-1813, 1871. doi: 10.3969/j.issn.1671-0460.2021.08.011

    MENG Zhixin, LUO Lei, CHEN Jingyi, et al. Influence of fiber bundle size on tensile properties and strength distribution of Mini-C/SiC[J]. Contemporary Chemical Industry,2021,50(8):1810-1813, 1871(in Chinese). doi: 10.3969/j.issn.1671-0460.2021.08.011
    [7] 姜卓钰, 束小文, 吕晓旭, 等. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8):89-96. doi: 10.11868/j.issn.1001-4381.2020.000806

    JIANG Zhuoyu, SHU Xiaowen, LYU Xiaoxu, et al. Mechanical properties of SiC whisker reinforced SiCf/SiC composites[J]. Journal of Materials Engineering,2021,49(8):89-96(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000806
    [8] 杜永龙, 张毅, 王龙, 等. 基于深度学习的平纹Cf/SiC复合材料原位拉伸损伤演化与断裂分析[J]. 硅酸盐通报, 2022, 41(1): 249-257.

    DU Yonglong, ZHANG Yi, WANG Long, et al. In-situ tensile damage evolution and fracture analysis of plain weave Cf/SiC based on deep learning[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 249-257(in Chinese).
    [9] 陈曦, 张立同, 梅辉, 等. 2D C/SiC复合材料氧化损伤的红外热波成像检测[J]. 复合材料学报, 2011, 28(5):112-118.

    CHEN Xi, ZHANG Litong, MEI Hui, et al. Testing and evaluation of oxidation damages in 2D C/SiC by thermography[J]. Acta Materiae Compositae Sinica,2011,28(5):112-118(in Chinese).
    [10] PRESBY M J, MANSOUR R, MANIGANDAN K, et al. Characterization and simulation of foreign object damage in curved and flat SiC/SiC ceramic matrix composites[J]. Ceramics International,2018,45(2):2635-2643. doi: 10.1016/j.ceramint.2018.10.207
    [11] SAUCEDO-MORA L, LOWE T, ZHAO S, et al. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite[J]. Journal of Nuclear Materials,2016,481:13-23. doi: 10.1016/j.jnucmat.2016.09.007
    [12] CHATEAU C, GÉLÉBART L, BORNERT M, et al. Modeling of damage in unidirectional ceramic matrix composites and multi-scale experimental validation on third generation SiC/SiC minicomposites[J]. Journal of the Mechanics and Physics of Solids,2014,63:298-319. doi: 10.1016/j.jmps.2013.09.001
    [13] 昝卓良. SiC/C-SiC复合材料热震特性与铣削性能研究[D]. 济南: 山东大学, 2021.

    ZHAN Zhuoliang. Thermal shock characteristics and milling performance of SiC/C-SiC composites[D]. Ji'nan: Shandong University, 2021(in Chinese).
    [14] 吴守军. 3D SiC/SiC复合材料热化学环境行为[D]. 西安: 西北工业大学, 2006.

    WU Shoujun. Thermochemical environmental behavior of 3D SiC/SiC composites[D]. Xi'an: Northwestern Polytechnical University, 2006(in Chinese).
    [15] LIU R J, WANG F, ZHANG J P, et al. Effects of CVI SiC amount and deposition rates on properties of SiCf/SiC composites fabricated by hybrid chemical vapor infiltration (CVI) and precursor infiltration and pyrolysis (PIP) routes[J]. Ceramics International,2021,47(19):26971-26977. doi: 10.1016/j.ceramint.2021.06.110
    [16] 国防科工委科技与质量司. 连续纤维增强陶瓷基复合材料常温拉伸性能试验方法: GJB 8736—2015[S]. 北京: 总装备部军标出版发行部, 2016.

    Department of Science and Quality, Commission of STIND for National Defense. Test method for tensile properties of continuous fiber reinforced ceramic matrix composites at room temperature: GJB 8736—2015[S]. Beijing: Military Standard Publishing and Distribution Department of General Armaments Department, 2016(in Chinese).
    [17] 中国建筑材料工业协会. 精细陶瓷弯曲强度试验方法: GB/T 6569—2006[S]. 北京: 中国标准出版社, 2006.

    China Building Materials Industry Association. Fine ceramic flexural strength test method: GB/T 6569—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
    [18] 于海蛟. 多层界面制备、表征及其对SiCf/SiC复合材料性能的影响[D]. 长沙: 国防科学技术大学, 2011.

    YU Haijiao. Preparation and characterization of multilayer interface and its effect on the properties of SiCf/SiC composites[D]. Changsha: National University of Defense Technology, 2011(in Chinese).
    [19] DUAN Y D, QIU H P, YANG T T, et al. Flexural failure mechanism of 2.5D woven SiCf/SiC composites: Combination of acoustic emission, digital image correlation and X-ray tomography[J]. Composites Communications,2021,28:100921. doi: 10.1016/j.coco.2021.100921
    [20] 胡晓安, 张宇, 阳海棠, 等. 三维编织SiC/SiC复合材料拉伸和弯曲损伤机制[J]. 复合材料学报, 2019, 36(8):1879-1885. doi: 10.13801/j.cnki.fhclxb.20181018.001

    HU Xiao'an, ZHANG Yu, YANG Haitang, et al. Tensile and bending damage mechanism of 3D braided SiC/SiC composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1879-1885(in Chinese). doi: 10.13801/j.cnki.fhclxb.20181018.001
    [21] 王锟, 陈刘定, 郑翔. 平纹编织C/SiC复合材料在室温和高温环境下的拉伸行为[J]. 航空材料学报, 2010, 30(1):78-84. doi: 10.3969/j.issn.1005-5053.2010.1.015

    WANG Kun, CHEN Liuding, ZHENG Xiang. Comparison of tensile behavior of plain-woven carbon/silicon carbide composites at room temperature and high temperature[J]. Journal of Aeronautical Materials,2010,30(1):78-84(in Chinese). doi: 10.3969/j.issn.1005-5053.2010.1.015
    [22] 刘倩, 陈思安, 潘勇. SiC/CVD SiC复合涂层的抗氧化及抗热震性能研究[J]. 宇航总体技术, 2021, 5(2):39-48.

    LIU Qian, CHEN Si'an, PAN Yong. Study on oxidation resistance and thermal shock resistance of SiC/CVD SiC composite coating[J]. Aerospace General Technology,2021,5(2):39-48(in Chinese).
    [23] 涂建勇, 栾新刚, 成来飞, 等. 薄界面3D C/SiC复合材料的热震损伤机制[J]. 固体火箭技术, 2009, 32(4):461-464. doi: 10.3969/j.issn.1006-2793.2009.04.025

    TU Jianyong, LUAN Xingang, CHENG Laifei, et al. Damaging mechanism of 3D C/SiC composite with thin interlayer during thermal shock process[J]. Solid Rocket Technology,2009,32(4):461-464(in Chinese). doi: 10.3969/j.issn.1006-2793.2009.04.025
    [24] 管国阳, 矫桂琼, 张增光. 2D-C/SiC复合材料的宏观拉压特性和失效模式[J]. 复合材料学报, 2005, 22(4):81-85. doi: 10.3321/j.issn:1000-3851.2005.04.014

    GUAN Guoyang, JIAO Guiqiong, ZHANG Zengguang. Uniaxial macro-mechanical property and failure mode of a 2D-woven C/SiC composite[J]. Acta Materiae Compositae Sinica,2005,22(4):81-85(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.04.014
    [25] 李明远. SiCf/SiC复合材料的性能研究及仿真计算[D]. 长沙: 国防科技大学, 2019.

    LI Mingyuan. Performance research and simulation calculation of SiCf/SiC composites[D]. Changsha: National University of Defense Technology, 2019(in Chinese).
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  531
  • HTML全文浏览量:  197
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 修回日期:  2022-09-14
  • 录用日期:  2022-09-30
  • 网络出版日期:  2022-10-12
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回