留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合金属氧化物在废水处理中的应用研究综述

朱巧灵 赵晓丹 刘成瑞 王正江 蓝紫薇 周振

朱巧灵, 赵晓丹, 刘成瑞, 等. 混合金属氧化物在废水处理中的应用研究综述[J]. 复合材料学报, 2023, 40(6): 3255-3269. doi: 10.13801/j.cnki.fhclxb.20221005.001
引用本文: 朱巧灵, 赵晓丹, 刘成瑞, 等. 混合金属氧化物在废水处理中的应用研究综述[J]. 复合材料学报, 2023, 40(6): 3255-3269. doi: 10.13801/j.cnki.fhclxb.20221005.001
ZHU Qiaoling, ZHAO Xiaodan, LIU Chengrui, et al. Recent development and application of mixed metal oxides in wastewater treatment: A review[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3255-3269. doi: 10.13801/j.cnki.fhclxb.20221005.001
Citation: ZHU Qiaoling, ZHAO Xiaodan, LIU Chengrui, et al. Recent development and application of mixed metal oxides in wastewater treatment: A review[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3255-3269. doi: 10.13801/j.cnki.fhclxb.20221005.001

混合金属氧化物在废水处理中的应用研究综述

doi: 10.13801/j.cnki.fhclxb.20221005.001
基金项目: 国家自然科学基金(51878403);上海市曙光计划项目(19SG49)
详细信息
    通讯作者:

    赵晓丹,博士,副教授,硕士生导师,研究方向为水处理技术 E-mail: zhaoxiaodan@shiep.edu.cn

  • 中图分类号: TB331

Recent development and application of mixed metal oxides in wastewater treatment: A review

Funds: National Natural Science Foundation of China (51878403); Dawn Program of Shanghai Education Commission (19SG49)
  • 摘要: 混合金属氧化物(Mixed metal oxide,MMO),即一种以上金属的氧化物,因其在水中结构的独特变化,能展现出较强的吸附性能和催化活性,在废水处理方面具有极大应用潜力。本文综述了MMO的制备方法,主要可分为固相烧结法、聚合物前驱体焙烧法、层状双金属氢氧化物(Layered double hydroxides,LDHs)前驱体焙烧法、化学共沉淀法和水热法5种,并详细介绍了通过改变这些合成方法与合成条件实现的MMO元素组成、元素比例、形貌结构等的控制,以调控其性质性能。系统分析了MMO在去除重金属、类金属、有机污染物和阴离子方面的主要机制及研究进展,其中主要机制为在MMO结构重组过程中,伴随有吸附、催化及其协同作用。得益于这3种机制MMO不仅能实现单一污染物的高效脱除,还能实现多污染物的同步去除,在废水处理方面有着显著成效,但目前大多数研究仍停留在实验阶段,在实际废水处理及工程应用上的研究尚少。

     

  • 图  1  MMO的结构记忆效应

    Figure  1.  Structure memory effect of MMO

    图  2  MMO去除的重金属主要机制

    Figure  2.  Removal mechanism of heavy metal by MMO

    图  3  FeCu-MMO对As的光催化氧化及吸附机制

    Figure  3.  Photocatalytic oxidation and adsorption mechanism of As removal by FeCu-MMO

    图  4  FeMn-MMO催化降解水中三氯乙烯的反应机制

    Figure  4.  Reaction mechanism of catalytic degradation of trichloroethylene in water by FeMn-MMO

    图  5  钙铝石对水中阴离子的去除机制

    Figure  5.  Removal mechanism of anions in water by mayenite

    表  1  混合金属氧化物(MMO)的不同制备方法及条件

    Table  1.   Different preparation methods and conditions of mixed metal oxide (MMO)

    Synthetic methodMMORaw materialpHOther conditionsCalcination temperature/℃Preparation time/hRef.
    Solid-phase sintering CaAl-MMO CaO, Al2O3 1200 4-5 [15]
    Polymer precursor calcination method ZnAlNiZr-MMO Zn(NO3)2·6H2O, Al(NO3)3·9H2O, Ni(NO3)2·6H2O, Zr(NO3)4·5H2O, C6H8O7·H2O, HOCH2CH2OH Stir at 60-70℃, stir at 80-
    90℃ and heat treat at 300℃
    550 18-24 [16]
    CoCu-MMO Co(NO3)2·6H2O, Cu(NO3)2·3H2O, C6H8O7·H2O, CH3CH2OH Stir at normal atmospheric temperature and heat to 80℃ 500 53-55 [17]
    LDHs precursor calcination method MgAl-MMO Mg(NO3)2·6H2O, Al(NO3)3·9H2O, NaOH, Na2CO3 9.0 Refluxing crystallization 500 13-15 [18]
    CoCr-MMO Co(NO3)2·6H2O, Cr(NO3)3·9H2O, NaOH, Na2CO3 9.0 Age at 80℃ for 24 h, stir,
    60℃ drying
    400 40-42 [19]
    Chemical coprecipitation FeSn-MMO Na2SnO3, FeCl3, NaOH 5.3 Stir, precipitate, 70℃ drying 250 11-13 [20]
    FeZr-MMO Zr(SO4)2·4H2O, FeSO4·7H2O, NaOH 7.5 Stir, precipitate, aging,
    65℃ drying
    [21]
    Hydrothermal method SbMo-MMO SbCl3, NaMoO6·2H2O, CH3CH2OH Magnetic stir, pressure cooker 180℃ for 24 h >24 [22]
    Note: LDHs—Layered double hydroxides.
    下载: 导出CSV

    表  2  MMO处理水中污染物的应用

    Table  2.   Application of MMO in the wastewater treatment

    ContaminantMMOApplicationAdsorption
    capacity/(mg·g−1)
    Removal
    efficiency/%
    MechanismRef.
    Heavy metal ZnSn-MMO Cu2+, Pb2+, Zn2+ 38.9, 117.2, 29.1 Surface complexation and adsorption [50]
    FeMn-MMO Pb2+ 108.1 Surface complexation and adsorption [51]
    MgAl-MMO Cd2+, Pb2+ 386.1, 359.7 Surface complexation and adsorption [52]
    FeZr-MMO Cr(Ⅵ) 59.9 Reorganization and surface adsorption [53]
    MgAl-MMO Cr(Ⅵ) 94.6 Reorganization and surface adsorption [54]
    Metalloid FeZr-MMO Se(IV) 277.0 Reorganization and surface adsorption [55]
    MgAl2O4 Se(IV) 179.6 Reorganization and surface adsorption [49]
    FeZr-MMO Sb(V) 51.0 Reorganization and surface adsorption [21]
    FeMn-MMO Sb(V) 95.0 Reorganization and surface adsorption [37]
    FeMn-MMO As(V) 132.8 Reorganization and surface adsorption [56]
    FeAl-MMO As(III) 314.9 >99.0 Catalysis and adsorption [57]
    CuFe-MMO As(III) 118.1 Catalysis and adsorption [58]
    Organic pollutants FeMn-MMO TCE 100 Catalysis [59]
    NiCo2O4 AP 99.5 Catalysis [60]
    CoNi-MMO PR 70.0 Adsorption [61]
    FeMn-MMO RBK5 88.0 Catalysis [62]
    1D ZnO-ZnFe2O4 CR 263.0 Adsorption [13]
    Nd-CoAl-MMO AR 100 Catalysis [63]

    Halogen ion
    MgAl-MMO Br, I 362.3 Reorganization and surface adsorption [47]
    MgZr-MMO F 144.1 Reorganization and surface adsorption [64]
    LaZr-MMO F 97.0 Reorganization and surface adsorption [65]
    CaAl-MMO Cl 105.9, 96.0 Reorganization and surface adsorption [15]
    Oxyanion ZnAl−MMO SO42– 62.5 Reorganization and surface adsorption [66]
    CeAl-MMO PO43– 70.4 Reorganization and surface adsorption [67]
    CeAl-MMO PO43– 249.3 Reorganization and surface adsorption [68]
    Other anions MgAl-MMO S2– 82.0 Reorganization and surface adsorption [69]
    Notes: TCE—Trichloroethylene; AP—4−acetaminophenol; PR—Procion red; RBK5—Reactive black 5; CR—Congo red; AR14—Acid red 14.
    下载: 导出CSV
  • [1] BALDASSARRE G D, WANDERS N, AGHAKOUCHAK A, et al. Water shortages worsened by reservoir effects[J]. Nature,2018,1(11):617-622.
    [2] MENATALLA A, MUSTHAFA O M, ADEWALE G, et al. Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy[J]. Nature,2022,12(5):1-25.
    [3] SERMON P A, WALTON T J, LUENGO M A M, et al. Characterization of porous silica-alumina sol-gels: Model heterogeneous catalysts[J]. Studies in Surface Science and Catalysis,1991,62:599-606.
    [4] AVNISH A, VIVEK J, KULDEEP S, et al. Applications of metal/mixed metal oxides as photocatalyst: A review[J]. Oriental Journal of Chemistry,2016,32(4):20838.
    [5] 武利园, 王鑫, 郭朋朋, 等. 层状双金属氢氧化物活化过硫酸盐降解有机污染物研究进展[J]. 复合材料学报, 2022, 39(5):2034-2048.

    WU Liyuan, WANG Xin, GUO Pengpeng, et al. Layered double hydroxides mediated persulfate activation for organic pollutants degradation: A review[J]. Acta Materiae Compositae Sinica,2022,39(5):2034-2048(in Chinese).
    [6] TAO Y, WU L, ZHAO X, et al. Strong hollow spherical La2NiO4 photocatalytic microreactor for round-the-clock environmental remediation[J]. ACS Applied Materials & Interfaces,2019,11(29):25967-25975. doi: 10.1021/acsami.9b07216
    [7] EFAZ A, AMNB C, MAHD E, et al. Mixed oxides CuO-NiO fabricated for selective detection of 2-aminophenol by electrochemical approach[J]. Journal of Materials Research and Technology,2020,9(2):1457-1467. doi: 10.1016/j.jmrt.2019.11.071
    [8] 刘媛. Cu掺杂的Mg-Al类水滑石的制备、表征及其催化性能[J]. 化工进展, 2011, 30(11):2438-2442.

    LIU Yuan. Preparation and characterization of Cu-doped Mg-Al hydrotalcites and their catalytic performances[J]. Chemical Industry and Engineering Progress,2011,30(11):2438-2442(in Chinese).
    [9] TAKEHIRA K. Recent development of layered double hydroxide-derived catalysts−Rehydration, reconstitution, and supporting, aiming at commercial application[J]. Applied Clay Science,2017,136:112-141. doi: 10.1016/j.clay.2016.11.012
    [10] 李丽. 双金属氧化物微纳结构材料的制备及其电催化性能研究[D]. 淮北: 淮北师范大学, 2020.

    LI Li. Preparetion of micro/nanostructured bimetallic oxides and enhanced electrocatalytic performance[D]. Huaibei: Huaibei Normal University, 2020(in Chinese).
    [11] YAN L G, YANG K, YU S J, et al. Magnetic Fe3O4/MgAl-LDH composite for effective removal of three red dyes from aqueous solution[J]. Chemical Engineering Journal,2014,252(15):38-46.
    [12] ZHANG H, LAI L, FANG Q, et al. Cation-π structure inducing efficient peroxymonosulfate activation for pollutant degradation over atomically dispersed cobalt bonding graphene-like nanospheres[J]. Applied Catalysis B: Environmental,2021,286(5):119912.
    [13] APPIAH N R, BAYE A F, GADISA B T, et al. In-situ prepared ZnO-ZnFe2O4 with 1D nanofiber network structure: An effective adsorbent for toxic dye effluent treatment[J]. Journal of Hazardous Materials, 2019, 373: 459-467.
    [14] RAMU A G, KUMARI M, ELSHIKH M S, et al. A facile and green synthesis of CuO/NiO nanoparticles and their removal activity of toxic nitro compounds in aqueous medium[J]. Chemosphere,2021,271:129475. doi: 10.1016/j.chemosphere.2020.129475
    [15] PAUL B, CHANG W. Mayenite-to-hydrocalumite transformation for the removal of chloride from salinized groundwater and the recycling potential of spent hydrocalumite for chromate removal[J]. Desalination,2020,474:114186. doi: 10.1016/j.desal.2019.114186
    [16] BEZERRA D M, ASSAF E M. Influence of the preparation method on the structural properties of mixed metal oxides[J]. Science and Technology of Materials,2018,30(3):166-173. doi: 10.1016/j.stmat.2018.07.001
    [17] LUO J, XUAN K, WANG Y, et al. Aerobic oxidation of fluorene to fluorenone over Co–Cu bimetal oxides[J]. New Journal of Chemistry,2019,43(22):8428-8438. doi: 10.1039/C9NJ00499H
    [18] 赵芸. 层状双金属氢氧化物及氧化物的可控制备和应用研究[D]. 北京: 北京化工大学, 2002.

    ZHAO Yun. Preparation of LDH and LDO in a controllable fashion for specific applications[D]. Beijing: Beijing University of Chemical Technology, 2002(in Chinese).
    [19] DENG W, GAO B, JIA Z, et al. Co–Cr bimetallic oxides derived from layered double hydroxides with high catalytic performance for chlorinated aromatics oxidation[J]. Catalysis Science& Technology,2021,11(15):5094-5108.
    [20] BISWAS K, GUPTA K, GHOSH U C. Adsorption of fluoride by hydrous iron(III)-tin(IV) bimetal mixed oxide from the aqueous solutions[J]. Chemical Engineering Journal, 2009, 149(1-3): 196-206.
    [21] LI X, DOU X, LI J. Antimony(V) removal from water by iron-zirconium bimetal oxide: Performance and mecha-nism[J]. Journal of Environmental Sciences,2012,24(7):1197-1203. doi: 10.1016/S1001-0742(11)60932-7
    [22] WANG J, WANG B, LIU Z, et al. Nature of bimetallic oxide Sb2MoO6/rGO anode for high-performance potassium-ion batteries[J]. Advanced Science,2019,6(17):1900904. doi: 10.1002/advs.201900904
    [23] RAO C, BISWAS K. Essentials of inorganic materials synthesis[M]. American: John Wiley & Sons, 2015.
    [24] 顾智军. 复合金属氧化物的可控制备、结构及其性能研究[D]. 北京: 北京化工大学, 2008.

    GU Zhijun. Controllable preparation, structure and properties of complex metal oxides[D]. Beijing: Beijing University of Chemical Technology, 2008(in Chinese).
    [25] CAVANI F, TRIFIRO F, BARTOLINI A, et al. SnO2-V2O5-based catalysts: Nature of surface species and their acti-vity in o-xylene oxidation[J]. Journal of the Chemical Society,1996,92(21):4321-4330.
    [26] GUANG Q L, INGO L, GERHARD W. A general polymer-based process to prepare mixed metal oxides: The case of Zn1-xMgxO nanoparticles[J]. Journal of the American Chemical Society,2006,128(48):15445. doi: 10.1021/ja0638096
    [27] 刘星群, 谢水波, 曾凡勇, 等. 亚铁铝类水滑石吸附铀的性能与吸附机制[J]. 复合材料学报, 2017, 34(1):183-190. doi: 10.13801/j.cnki.fhclxb.20160308.001

    LIU Xingqun, XIE Shuibo, ZENG Fanyong, et al. Characteristics and mechanism of uranium(Ⅵ) adsorption by Fe(Ⅱ)-Al LDH[J]. Acta Materiae Compositae Sinica,2017,34(1):183-190(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160308.001
    [28] 胡静. 焙烧镁铝碳酸根水滑石在含氯废水处理中的应用基础研究[D]. 杭州: 浙江大学, 2005.

    HU Jing. Adsorption behaviors of calcined Mg-Al-CO3-LDH towards removal of chloride from aqueous solution[D]. Hangzhou: Zhejiang Unversity, 2005(in Chinese).
    [29] FENG X, LONG R, WANG L, et al. A review on heavy metal ions adsorption from water by layered double hydroxide and its composites[J]. Separation and Purification Technology,2022,284:120099. doi: 10.1016/j.seppur.2021.120099
    [30] LEE S B, KO E H, PARK J Y, et al. Mixed metal oxide by calcination of layered double hydroxide: Parameters affecting specific surface area[J]. Nanomaterials,2021,11(5):1153. doi: 10.3390/nano11051153
    [31] OCSOY I, DEMIRBAS A, MCLAMORE E S, et al. Green synthesis with incorporated hydrothermal approaches for silver nanoparticles formation and enhanced antimicrobial activity against bacterial and fungal pathogens[J]. Jour-nal of Molecular Liquids,2017,238:263-269. doi: 10.1016/j.molliq.2017.05.012
    [32] HAN L, DONG S, WANG E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction[J]. Advanced Materials,2016,28(42):9266-9291. doi: 10.1002/adma.201602270
    [33] TROTOCHAUD L, RANNEY J K, WILLIAMS K N, et al. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution[J]. Journal of the American Chemical Society,2012,134(41):17253-17261. doi: 10.1021/ja307507a
    [34] MANVIRI R, UMA S. Photocatalytic degradation of toxic phenols from water using bimetallic metal oxide nanostructures[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018,553:546-561. doi: 10.1016/j.colsurfa.2018.05.071
    [35] 向超. 基于p-d轨道杂化的过渡金属氧化物制备及吸附除磷机制研究[D]. 北京: 北京林业大学, 2020.

    XIANG Chao. Preparation of transition metal oxides based on p-d orbital hybridization and adsoption mechanism for aqueous PO43–[D]. Beijing: Beijing Forestry University, 2020(in Chinese).
    [36] LIU R, XU W, HE Z, et al. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide[J]. Chemosphere,2015,138:616-624. doi: 10.1016/j.chemosphere.2015.07.039
    [37] YANG K, LI C, WANG X, et al. Functional adjustment and cyclic application of Fe-Mn bimetal composite for Sb(V) removal: Transformation of iron oxides forms and a stable regeneration method[J]. Journal of Cleaner Production,2020,266:122007. doi: 10.1016/j.jclepro.2020.122007
    [38] WANG P, WANG J, AN X, et al. Generation of abundant defects in Mn-Co mixed oxides by a facile agargel method for highly efficient catalysis of total toluene oxidation[J]. Applied Catalysis B:Environmental,2021,282:119560. doi: 10.1016/j.apcatb.2020.119560
    [39] YAMAGUCHI K, MORI K, MIZUGAKI T, et al. Epoxidation of α, β-unsaturated ketones using hydrogen peroxide in the presence of basic hydrotalcite catalysts[J]. The Jour-nal of Organic Chemistry,2000,65(21):6897-6903.
    [40] PALMER H M, SNEDDEN A, WRIGHT A J, et al. Crystal structure and magnetic properties of Ca2MnAlO5.5, an n=3 brownmillerite phase[J]. Chemistry of Materials,2006,18(5):1130-1133. doi: 10.1021/cm052134n
    [41] JUNG S Y, KIM B K, HIRATA S, et al. Particle size effect of layered double hydroxide on the porosity of calcined metal oxide[J]. Applied Clay Science,2020,195:188-193.
    [42] MORIYAMA S, SASAKI K, HIRAJIMA T. Effect of freeze drying on characteristics of Mg-Al layered double hydroxides and bimetallic oxide synthesis and implications for fluoride sorption[J]. Applied Clay Science, 2016, 132-133: 460-467.
    [43] JIANG J, ZHANG Y, ZHENG Y, et al. Transesterification of soybean oil with ethylene glycol catalyzed by modified Li-Al layered double hydroxides[J]. Chemical Engineering & Technology,2013,36(8):1371-1377.
    [44] TAKEMOTO M, TOKUDOME Y, MURATA H, et al. Synthesis of high-specific-surface-area Li-Al mixed metal oxide: Through nanoseed-assisted growth of layered double hydroxide[J]. Applied Clay Science,2021,203:106006. doi: 10.1016/j.clay.2021.106006
    [45] 唐朝春, 陈惠民, 刘名, 等. ZnAl和MgAl水滑石吸附废水中磷的研究进展[J]. 化工进展, 2015, 34(1):245-251. doi: 10.16085/j.issn.1000-6613.2015.01.044

    TANG Chaochun, CHEN Huimin, LIU Ming, et al. Advances in adsorption of phosphate in wastewater by ZnAl and MgAl hydrotalcite[J]. Chemical Industry and Engi-neering Progress,2015,34(1):245-251(in Chinese). doi: 10.16085/j.issn.1000-6613.2015.01.044
    [46] 崔婉莹, 艾恒雨, 张世豪, 等. 改性吸附剂去除废水中磷的应用研究进展[J]. 化工进展, 2020, 39(10):4210-4226. doi: 10.16085/j.issn.1000-6613.2019-2085

    CUI Wanying, AI Hengyu, ZHANG Shihao, et al. Research status on application of modified adsorbents in phosphorus removal from wastewater[J]. Chemical Industry and Engineering Progress,2020,39(10):4210-4226(in Chinese). doi: 10.16085/j.issn.1000-6613.2019-2085
    [47] 吕亮. 层状双金属(氢)氧化物对卤离子的吸附和离子交换性能研究[D]. 北京: 北京化工大学, 2005.

    LYU Liang. Adsoption an ion-exchange behavior of LDH in uptake of halide anions from aqueous solution[D]. Beijing: Beijing University of Chemical Technology, 2005(in Chinese).
    [48] ULIBARRI M A, PAVLOVIC I, BARRIGA C, et al. Adsorption of anionic species on hydrotalcite-like compounds: Effect of interlayer anion and crystallinity[J]. Applied Clay Science, 2001, 18(1-2): 17-27.
    [49] TIAN N, ZHOU Z, TIAN X, et al. Superior capability of MgAl2O4 for selenite removal from contaminated groundwater during its reconstruction of layered double hydroxides[J]. Separation and Purification Technology,2017,176:66-72. doi: 10.1016/j.seppur.2016.11.062
    [50] HONARMAND M, AMINI M, IRANFAR A, et al. Green synthesis of ZnO/SnO2 nanocomposites using pine leaves and their application for the removal of heavy metals from aqueous media[J]. Journal of Cluster Science,2021,33:301-310.
    [51] NAGA J M S V, HARAFAN A, SEN G S, et al. Chitosan immobilised granular FeOOH-MnxOy bimetal-oxides nanocomposite for the adsorptive removal of lead from water[J]. Journal of Environmental Chemical Engineering,2022,10(2):107353. doi: 10.1016/j.jece.2022.107353
    [52] HOU T, YAN L, LI J, et al. Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent[J]. Chemical Engineering Journal,2020,384(15):123331.
    [53] WANG Y, LIU D F, LU J B, et al. Enhanced adsorption of hexavalent chromium from aqueous solutions on facilely synthesized mesoporous iron-zirconium bimetal oxide[J]. Colloids & Surfaces A: Physicochemical & Engi-neering Aspects,2015,481:133-142.
    [54] ZHANG Z Q, LIAO M C, ZENG H Y, et al. Temperature effect on chromium(VI) removal by Mg/Al mixed metal oxides as adsorbents[J]. Applied Clay Science,2014,102:246-253. doi: 10.1016/j.clay.2014.10.005
    [55] MEGHA T, SOMENATH M. Bimetallic oxide nanohybrid synthesized from diatom frustules for the removal of selenium from water[J]. Journal of Nanomaterials, 2017, 2017: 1734643.
    [56] WEN Z P, ZHANG Y L, GUO S, et al. Facile template-free fabrication of iron manganese bimetal oxides nanospheres with excellent capability for heavy metals removal[J]. Journal of Colloid & Interface Science,2017,486:211-218.
    [57] DING Z, FU F, CHENG Z, et al. Novel mesoporous FeAl bimetal oxides for As(III) removal: Performance and mechanism[J]. Chemosphere,2017,169:297-307. doi: 10.1016/j.chemosphere.2016.11.057
    [58] SUN T, ZHAO Z, LIANG Z, et al. -Efficient As(III) removal by magnetic CuO-Fe3O4 nanoparticles through photo-oxidation and adsorption under light irradiation[J]. Jour-nal of Colloid and Interface Science,2017,495:168-177. doi: 10.1016/j.jcis.2017.01.104
    [59] YANG X, CAI J, WANG X, et al. A bimetallic Fe-Mn oxide-activated oxone for in situ chemical oxidation (ISCO) of trichloroethylene in groundwater: Efficiency, sustained activity, and mechanism investigation[J]. Environmental Science and Technology,2020,54(6):3714-3724. doi: 10.1021/acs.est.0c00151
    [60] LI X, YANG Z, WU G, et al. Fabrication of ultrathin lily-like NiCo2O4 nanosheets via mooring NiCo bimetallic oxide on waste biomass-derived carbon for highly efficient removal of phenolic pollutants[J]. Chemical Engineering Journal,2022,441(1):136066.
    [61] CHOWDHURY A N, RAHIM A, FERDOSI Y J, et al. Cobalt-nickel mixed oxide surface: A promising adsorbent for the removal of PR dye from water[J]. Applied Surface Science,2010,256(12):3718-3724. doi: 10.1016/j.apsusc.2010.01.013
    [62] 徐铭骏, 郭兆春, 李立, 等. 纳米片状Mn2O3@α-Fe3O4活化过碳酸盐降解偶氮染料[J]. 化工进展, 2022, 41(2):1043-1053.

    XU Mingjun, GUO Zhaochun, LI Li, et al. Degradation of azo dyes by sodium percarbonate activated with nanosheet Mn2O3@α-Fe3O4[J]. Chemical Industry and Engineering Progress,2022,41(2):1043-1053(in Chinese).
    [63] KHODAM F, AMANI G H R, ABER S, et al. Neodymium doped mixed metal oxide derived from CoAl-layered double hydroxide: Considerable enhancement in visible light photocatalytic activity[J]. Journal of Industrial and Engineering Chemistry,2018,68:311-324. doi: 10.1016/j.jiec.2018.08.002
    [64] WANG X, PFEIFFER H, WEI J, et al. 3D porous Ca-modified Mg-Zr mixed metal oxide for fluoride adsorption[J]. Chemical Engineering Journal,2022,428(15):131371.
    [65] MUTHU PRABHU S, MEENAKSHI S. Enriched fluoride sorption using chitosan supported mixed metal oxides beads: Synthesis, characterization and mechanism[J]. Journal of Water Process Engineering,2014,2:96-104. doi: 10.1016/j.jwpe.2014.05.011
    [66] 程珺煜, 岳秀萍, 曹岳, 等. Zn/Al双金属氧化物对水中硫酸根离子的吸附性能[J]. 环境工程学报, 2014, 8(1):131-137.

    CHENG Junyu, YUE Xiuping, CAO Yue, et al. Adsorptive removal of sulfate from water by Zn/Al layered double oxide[J]. Chinese Journal of Environmental Engineering,2014,8(1):131-137(in Chinese).
    [67] NAKARMI A, MOREIRA R, BOURDO S E, et al. Removal and recovery of phosphorus from contaminated water using novel, reusable, renewable resource−based aluminum/cerium oxide nanocomposite[J]. Water, Air, & Soil Pollution,2020,231(12):559-568.
    [68] NAKARMI A, CHANDRASEKHAR K, BOURDO S E, et al. Phosphate removal from wastewater using novel renewable resource-based, cerium/manganese oxide-based nanocomposites[J]. Environmental Science and Pollution Research International,2020,27(29):36688-36703. doi: 10.1007/s11356-020-09400-0
    [69] 王孝华, 李传强, 汤琪, 等. 利用镁铝双金属氧化物去除S2−的研究[J]. 应用化工, 2015, 44(3):401-404.

    WANG Xiaohua, LI Chuanqiang, TANG Qi, et al. Study on Mg-Al layered double oxides for sulfide anion (S2–) removal[J]. Applied Chemical Industry,2015,44(3):401-404(in Chinese).
    [70] SIDDIQUI S I, NAUSHAD M, CHAUDHRY S A. Promising prospects of nanomaterials for arsenic water remediation: A comprehensive review[J]. Process Safety and Environmental Protection,2019,126:60-97. doi: 10.1016/j.psep.2019.03.037
    [71] ALLAM B K, MUSA N, DEBNATH A, et al. Recent developments and application of bimetallic based materials in water purification[J]. Environmental Challenges,2021,5:352-366.
    [72] 中国国家标准化管理委员会. 地表水环境质量标准: GB/T 3838—2002[S]. 北京: 中国环境科学出版社, 2002.

    Standardization Administration of the People’s Republic of China. Environmental quality standards for surface water: GB/T 3838—2002[S]. Beijing: China Standards Press, 2005(in Chinese).
    [73] 中国国家标准化管理委员会. 海水水质标准: GB/T 3097—1997[S]. 北京: 中国标准出版社, 1997.

    Standardization Administration of the People’s Republic of China. Sea water quality standard: GB/T 3097—1997[S]. Beijing: China Environmental Press, 1997(in Chinese).
    [74] 中国国家标准化管理委员会. 污水综合排放标准: GB/T 8978—1996[S]. 北京: 中国标准出版社, 1997.

    Standardization Administration of the People’s Republic of China. Integrated wastewater discharge standard: GB/T 8978—1996[S]. Beijing: China Standards Press, 1997(in Chinese).
    [75] ELSAYED M, ESHAQ G, ELMETWALLY A E. Adsorption of heavy metals from aqueous solutions by Mg-Al-Zn mingled oxides adsorbent[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research,2016,74(7):1644-1657.
    [76] FERNANDEZ M G C, PALACIOS M A, CAMARA C. Flow-injection and continuous-flow systems for the determination of Se(IV) and Se(VI) by hydride generation atomic absorption spectrometry with on-line prereduction of Se(VI) to Se(IV)[J]. Analytica Chimica Acta,1993,283(1):386-392. doi: 10.1016/0003-2670(93)85248-I
    [77] QI P, WANG Y, ZENG J, et al. Progress in antimony capturing by superior materials: Mechanisms, properties and perspectives[J]. Chemical Engineering Journal,2021,419:130013. doi: 10.1016/j.cej.2021.130013
    [78] 杨金辉, 李聪, 谢水波, 等. 铁锰层状双氢氧化物的制备及其对废水中Sb(III)的吸附行为[J]. 复合材料学报, 2022, 39(8):3878-3888.

    YANG Jinhui, LI Cong, XIE Shuibo, et al. Preparation of Fe-Mn layered double hydroxides and its adsorption behavior of antimony(Ⅲ) from wastewater[J]. Acta Materiae Compositae Sinica,2022,39(8):3878-3888(in Chinese).
    [79] REDDY D, LEE S M, YANG J K, et al. Characterization of binary oxide photoactive material and its application for inorganic arsenic removal[J]. Journal of Industrial & Engineering Chemistry,2014,20(5):3658-3662.
    [80] ZHU J, CHEN C, LI Y, et al. Rapid degradation of aniline by peroxydisulfate activated with copper-nickel binary oxysulfide[J]. Separation and Purification Technology,2019,209:1007-1015. doi: 10.1016/j.seppur.2018.09.055
    [81] LI Y, ZHANG D, LI W, et al. Efficient removal of As(III) from aqueous solution by S-doped copper-lanthanum bimetallic oxides: Simultaneous oxidation and adsorption[J]. Chemical Engineering Journal,2020,384:123274. doi: 10.1016/j.cej.2019.123274
    [82] AL-MALIKY E A, GZAR H A, AL-AZAWY M G. Determination of point of zero charge (PZC) of concrete particles adsorbents[J]. IOP Conference Series: Materials Science and Engineering,2021,1184(1):012004. doi: 10.1088/1757-899X/1184/1/012004
    [83] SHAFIEE R M. Synthesis, characterization and adsorbing properties of hollow Zn-Fe2O4 nanospheres on removal of Congo red from aqueous solution[J]. Desalination, 2011, 280(1-3): 412-418.
    [84] KARAMIPOUR A, RASOULI N, MOVAHEDI M, et al. A kinetic study on adsorption of Congo red from aqueous solution by ZnO-ZnFe2O4-polypyrrole magnetic nanocomposite[J]. Physical Chemistry Research,2016,4(2):291-301.
    [85] LIU J, WONG L M, GURUDAYAL S, et al. Immobilization of dye pollutants on iron hydroxide coated substrates: Kinetics, efficiency and the adsorption mechanism[J]. Journal of Materials Chemistry A,2016,4(34):13280-13288. doi: 10.1039/C6TA03088B
    [86] DOTAN H, SIVULA K, GRAETZEL M, et al. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger[J]. Energy& Environmental Science,2011,4(3):958-964.
    [87] WU M, SU Z, FAN H, et al. New way of removing hydrogen sulfide at a high temperature: Microwave desulfurization using an iron-based sorbent supported on active coke[J]. Energy & Fuels,2017,31(4):4263-4272.
    [88] ALFRED A C, PATHMANATHAN S. Comparison of adsorption properties of commercial silica and rice husk ash (RHA) silica: A study by NIR spectroscopy[J]. Open Chemistry,2021,19(1):426-431. doi: 10.1515/chem-2021-0044
    [89] NT A, UG B, MS A. Cellulose supported bismuth vanadate nanocomposite for effective removal of organic pollutant[J]. Journal of Environmental Chemical Engineering,2020,8(4):104027. doi: 10.1016/j.jece.2020.104027
    [90] SAAA B, ADD E, KZ A, et al. Designing, structural determination and biological effects of rifaximin loaded chitosan-carboxymethyl chitosan nanogel[J]. Carbohydrate Polymers,2020,248(15):116782.
    [91] DING C, YANG X, LIU W, et al. Removal of natural organic matter using surfactant-modified iron oxide-coated sand[J]. Journal of Hazardous Materials, 2010, 174(1-3): 567-572.
    [92] NEAL R D, INOUE Y, HUGHES R A, et al. Catalytic reduction of 4-nitrophenol by gold catalysts: The influence of borohydride concentration on the induction time[J]. The Journal of Physical Chemistry C,2019,123(20):12894-12901. doi: 10.1021/acs.jpcc.9b02396
    [93] XU L, HE Z, ZHANG H, et al. Production of aromatic amines via catalytic co-pyrolysis of lignin and phenol-formaldehyde resins with ammonia over commercial HZSM-5 zeolites[J]. Bioresource Technology,2020,320:124252.
    [94] WU D, RAN J, ZHONG S, et al. FeNi3/NiFe-mixed metal oxide heterostructured nanosheets for catalytic nitro-amination[J]. ACS Applied Nano Materials,2021,4(8):7739-7745. doi: 10.1021/acsanm.1c00978
    [95] THEISS F L, COUPERTHWAITE S J, AYOKO G A, et al. A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides[J]. Journal of Colloid & Interface Science,2014,417:356-368.
    [96] GOH K H, LIM T T, DONG Z. Application of layered double hydroxides for removal of oxyanions: A review[J]. Water Research, 2008, 42(6-7): 1343-1368.
    [97] QIU X, SASAKI K, TAKAKI Y, et al. Mechanism of boron uptake by hydrocalumite calcined at different tempera-tures[J]. Journal of Hazard Mater,2015,287:268-277. doi: 10.1016/j.jhazmat.2015.01.066
    [98] LIANG L, HE J, WEI M, et al. Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: Equilibrium and kinetic studies[J]. Water Research,2006,40(4):735-743. doi: 10.1016/j.watres.2005.11.043
    [99] PARKER L M, MILESTONE N B, NEWMAN R H. The use of hydrotalcite as an anion absorbent[J]. Industrial and Engineering Chemistry Research,1995,34(4):1196-1202. doi: 10.1021/ie00043a023
    [100] SUN M, SU J, LIU S, et al. Simultaneous removal of nickel and phosphorus from spent electroless nickel plating wastewater via calcined Mg-Al-CO3 hydroxides[J]. RSC Advances,2015,5(99):80978-80989. doi: 10.1039/C5RA12570G
    [101] SWATI S, SAXENA U. Development of bimetal oxide doped multifunctional polymer nanocomposite for water treatment[J]. Nano Letters,2016,4:223-234.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  794
  • HTML全文浏览量:  305
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 修回日期:  2022-09-07
  • 录用日期:  2022-09-17
  • 网络出版日期:  2022-10-09
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回