留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于倒角处拉应变的玄武岩纤维约束矩形截面混凝土轴压峰值应力计算模型

刘小方 段昕智 欧阳利军

刘小方, 段昕智, 欧阳利军. 基于倒角处拉应变的玄武岩纤维约束矩形截面混凝土轴压峰值应力计算模型[J]. 复合材料学报, 2022, 39(11): 5650-5663. doi: 10.13801/j.cnki.fhclxb.20220930.001
引用本文: 刘小方, 段昕智, 欧阳利军. 基于倒角处拉应变的玄武岩纤维约束矩形截面混凝土轴压峰值应力计算模型[J]. 复合材料学报, 2022, 39(11): 5650-5663. doi: 10.13801/j.cnki.fhclxb.20220930.001
LIU Xiaofang, DUAN Xinzhi, OUYANG Lijun. Axial ultimate compressive stress model of BFRP-confined rectangular concrete based on tensile strain at rounded corners[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5650-5663. doi: 10.13801/j.cnki.fhclxb.20220930.001
Citation: LIU Xiaofang, DUAN Xinzhi, OUYANG Lijun. Axial ultimate compressive stress model of BFRP-confined rectangular concrete based on tensile strain at rounded corners[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5650-5663. doi: 10.13801/j.cnki.fhclxb.20220930.001

基于倒角处拉应变的玄武岩纤维约束矩形截面混凝土轴压峰值应力计算模型

doi: 10.13801/j.cnki.fhclxb.20220930.001
基金项目: 桥隧工程系列超高性能混凝土技术研究(CTKY-ZDXM-2018-003);国家自然科学基金(51708349)
详细信息
    通讯作者:

    欧阳利军,博士,副教授,硕士生导师,研究方向为工程结构加固理论和复合材料在土木工程中的应用 E-mail: ouyang@usst.edu.cn

  • 中图分类号: TB332

Axial ultimate compressive stress model of BFRP-confined rectangular concrete based on tensile strain at rounded corners

Funds: Research on ultra-high performance concrete technology of bridge and tunnel engineering series (CTKY-ZDXM-2018-003); National Natural Science Foundation of China (51708349)
  • 摘要: 对54个玄武岩纤维增强树脂基复合材料(BFRP)约束的矩形截面混凝土试件进行了轴压试验,探究了BFRP约束层数、倒角半径和截面长宽比对BFRP拉应变折减系数的影响规律。试验结果表明,依据矩形截面侧边拉应变和环向平均拉应变确定的BFRP拉应变折减系数会高估BFRP的约束效率。基于BFRP约束矩形截面混凝土时倒角处的纤维拉应变,建议了BFRP拉应变折减系数的计算方法,同时依据该计算方法和试验数据,通过构建柱状膜结构静水压力平衡模型建立了BFRP约束矩形截面混凝土轴压峰值应力计算模型。基于收集的大量试验数据,对比分析了本文建议的纤维增强树脂基复合材料(FRP)约束矩形截面混凝土轴压峰值应力计算模型和典型轴压峰值应力计算模型的预测结果,验证了典型计算模型的合理性,发现本文建议的FRP约束矩形截面混凝土轴压峰值应力计算模型的预测精度较高。

     

  • 图  1  玄武岩纤维增强树脂基复合材料(BFRP)约束后的矩形截面混凝土试件

    b—Width; h—Height; R—Corner radius

    Figure  1.  Concrete prisms confined with basalt fiber-reinforced polymer (BFRP) sheets

    图  2  试件修复和加固过程

    Figure  2.  Repairing and wrapping process of specimens

    图  3  应变片布置

    R1, T1, M1, M2, T2 and R2—Number of FRP strain measuring points

    Figure  3.  Strain gauges arrangement

    图  4  位移计布置

    Figure  4.  Displacement meters arrangement

    图  5  BFRP约束混凝土试件破坏形态

    Figure  5.  Failure modes of specimens confined with BFRP

    图  6  BFRP约束矩形截面混凝土约束层数-拉应变折减系数关系曲线

    Figure  6.  BFRP layers-strain reduction factor curves for rectangular sections concrete confined with BFRP

    图  7  BFRP约束矩形截面混凝土倒角半径-拉应变折减系数关系曲线

    Figure  7.  Corner radius-BFRP strain reduction factor curves for rectangular sections concrete confined with BFRP

    图  8  BFRP约束矩形截面混凝土倒角半径率-拉应变折减系数$k_{\text{εcr}}$关系曲线

    Figure  8.  Corner radius ratio-BFRP strain reduction factor $k_{\text{εcr}} $ curves for rectangular sections concrete confined with BFRP

    图  9  BFRP约束矩形截面混凝土长宽比-拉应变折减系数关系曲线

    Figure  9.  Aspect ratio-BFRP strain reduction factor curves for rectangular sections concrete confined with BFRP

    图  10  BFRP约束矩形截面混凝土不同倒角半径试件截面纤维布侧向应变分布

    Figure  10.  Distribution of FRP lateral strains of specimens with different corner radii for rectangular sections concrete confined with BFRP

    图  11  BFRP约束矩形截面混凝土不同长宽比试件截面纤维布侧向应变分布

    Figure  11.  Distribution of FRP lateral strains of specimens with different aspect ratios for rectangular sections concrete confined with BFRP

    图  12  BFRP约束矩形截面时有效约束区域

    Figure  12.  Effective confinement region in rectangular section confined with BFRP

    图  13  BFRP拉应变折减系数拟合曲线

    A—Variate for tensile strain reduction factor of BFRP

    Figure  13.  Fitted curve of strain reduction factors of BFRP

    图  14  倒角处BFRP微截面张力平衡模型

    Figure  14.  Micro tension equilibrium model of FRP rounded corners

    图  15  BFRP约束矩形截面混凝土轴压峰值应力拟合曲线

    fcc—Ultimate stress of confined concrete; fco—Ultimate stress of unconfined concrete; fl,e—Effective confinement stress

    Figure  15.  Fitted curve of axial ultimate stress for rectangular sections concrete confined with BFRP

    图  16  FRP约束矩形截面混凝土轴压典型峰值应力计算模型预测值与试验值对比

    Figure  16.  Comparison of results predicted by typical axial ultimate compressive stress models and test results for rectangular sections concrete confined with FRP

    图  17  选取的FRP约束矩形截面混凝土轴压典型峰值应力计算模型预测效果比较

    Figure  17.  Prediction performance comparison of selected axial ultimate compressive stress models for rectangular sections concrete confined with FRP

    表  1  试件基本参数

    Table  1.   Details of specimens

    Corner radius/mmNumber of confinement layerSection dimension/mm (Aspect ratio)
    100×100 (1.0)83×124.5 (1.5)75×150 (2.0)
    20 3 A10 R20 L3-1 A15 R20 L3-1 A20 R20 L3-1
    A10 R20 L3-2 A15 R20 L3-2 A20 R20 L3-2
    A10 R20 L3-3 A15 R20 L3-3 A20 R20 L3-3
    4 A10 R20 L4-1 A15 R20 L4-1 A20 R20 L4-1
    A10 R20 L4-2 A15 R20 L4-2 A20 R20 L4-2
    A10 R20 L4-3 A15 R20 L4-3 A20 R20 L4-3
    5 A10 R20 L5-1 A15 R20 L5-1 A20 R20 L5-1
    A10 R20 L5-2 A15 R20 L5-2 A20 R20 L5-2
    A10 R20 L5-3 A15 R20 L5-3 A20 R20 L5-3
    30 3 A10 R30 L3-1 A15 R30 L3-1 A20 R30 L3-1
    A10 R30 L3-2 A15 R30 L3-2 A20 R30 L3-2
    A10 R30 L3-3 A15 R30 L3-3 A20 R30 L3-3
    4 A10 R30 L4-1 A15 R30 L4-1 A20 R30 L4-1
    A10 R30 L4-2 A15 R30 L4-2 A20 R30 L4-2
    A10 R30 L4-3 A15 R30 L4-3 A20 R30 L4-3
    5 A10 R30 L5-1 A15 R30 L5-1 A20 R30 L5-1
    A10 R30 L5-2 A15 R30 L5-2 A20 R30 L5-2
    A10 R30 L5-3 A15 R30 L5-3 A20 R30 L5-3
    Notes:Number following letter A represents aspect ratio; Number following letter R represents corner radius; Number following letter L represents FRP layers; The last number represents sequence number of specimens with same condition.
    下载: 导出CSV

    表  2  BFRP力学性能

    Table  2.   Mechanical properties of BFRP

    TypeUltimate tensile stress/MPaElastic modulus/GPaUltimate tensile strain/%Thickness
    /mm
    Density
    /(g·m−2)
    BF330023031052.180.121341
    下载: 导出CSV

    表  3  混凝土配合比

    Table  3.   Proportions of concrete mix

    Strength grade of concreteSand ratioAmount of each composition/(kg·m−3)
    CementGravelSandWater
    C400.324511206568185
    下载: 导出CSV

    表  4  BFRP约束矩形截面混凝土轴压试验结果

    Table  4.   Test results of rectangular sections concrete confined with BFRP

    Specimenfcc/MPaεcuR1T1M1M2T2R2εh,max
    A10 R20 L3-161.720.014160.020740.016570.016780.017530.014170.02074
    A10 R20 L3-260.030.013480.013520.017310.017440.016790.017310.013080.01744
    A10 R20 L3-360.230.013680.013520.017090.016350.010430.013300.01709
    A10 R20 L4-169.150.016540.019920.015910.016350.017880.013080.01992
    A10 R20 L4-271.600.019230.013080.017090.016790.016570.018090.013730.01809
    A10 R20 L4-367.180.015860.012640.016350.016130.017880.013080.01788
    A10 R20 L5-179.020.022650.013080.016840.016350.016130.013300.01684
    A10 R20 L5-278.550.020240.012640.016660.015910.015700.016880.012430.01688
    A10 R20 L5-377.930.019440.012210.016440.015480.016660.012210.01666
    A10 R30 L3-165.440.015110.013950.017090.016570.017310.013730.01731
    A10 R30 L3-266.180.016120.014390.017530.017220.017660.020710.02071
    A10 R30 L3-365.910.015510.013520.017310.016790.016790.017310.014170.01731
    A10 R30 L4-177.790.019910.013730.017090.016350.016350.017340.013080.01734
    A10 R30 L4-276.570.018650.013300.016880.016570.016130.017090.013730.01709
    A10 R30 L4-378.570.02043-0.020170.016790.017220.017840.013730.02017
    A10 R30 L5-187.430.023150.012640.015700.015910.016620.013080.01662
    A10 R30 L5-287.810.023940.013080.017090.016570.016570.013520.01709
    A10 R30 L5-386.920.023240.012860.016670.016130.015910.016660.013300.01667
    A15 R20 L3-153.640.011860.011340.014530.013840.018090.018530.011550.01853
    A15 R20 L3-253.470.011530.000500.013840.017880.018310.011340.01831
    A15 R20 L3-351.940.010990.005130.013670.017660.018090.011120.01809
    A15 R20 L4-160.960.013940.011120.013850.013410.017440.018330.010900.01833
    A15 R20 L4-261.730.014260.011340.015090.013630.017660.018090.01809
    A15 R20 L4-360.200.013870.010900.014660.013190.017220.017880.010460.01788
    A15 R20 L5-167.110.016610.010680.013650.012970.016570.017440.010900.01744
    A15 R20 L5-266.270.016230.010030.013440.012750.017440.017880.010250.01788
    A15 R20 L5-368.800.016960.010030.014490.013190.017660.010900.01766
    A15 R30 L3-160.340.013170.013300.014310.014170.020930.02093
    A15 R30 L3-257.970.012340.012430.013880.013300.017440.018090.012640.01809
    A15 R30 L3-358.360.012830.012860.013890.017880.018310.013080.01831
    A15 R30 L4-167.340.015860.011770.013820.013300.017220.018090.012860.01809
    A15 R30 L4-269.450.016140.011990.014090.013730.017660.020710.02071
    A15 R30 L4-366.430.015310.011550.013790.012860.016790.012430.01679
    A15 R30 L5-174.620.018520.010680.013430.012640.016570.020930.02093
    A15 R30 L5-275.070.018860.011550.013650.012860.016790.017440.011990.01744
    A15 R30 L5-376.570.018990.011770.013080.017000.017660.012430.01766
    A20 R20 L3-146.780.009160.008500.013090.012100.008280.01309
    A20 R20 L3-247.810.010130.009160.013310.012320.020270.018310.008720.02027
    A20 R20 L3-347.900.010160.009160.013310.012540.019840.020710.02071
    A20 R20 L4-155.540.012110.008500.013090.012100.020060.020490.02049
    A20 R20 L4-252.030.011230.007630.013090.011660.019180.018090.008280.01918
    A20 R20 L4-352.440.011690.020270.011880.019620.018090.008720.02027
    A20 R20 L5-158.080.013310.007190.011010.018750.018310.007630.01875
    A20 R20 L5-258.980.013530.007630.012310.019620.021150.02115
    A20 R20 L5-359.280.013890.008070.012530.011880.018750.008500.01875
    A20 R30 L3-150.900.010550.010680.012530.012470.018090.011120.01809
    A20 R30 L3-252.160.011230.020490.012690.020490.018750.011340.02049
    A20 R30 L3-350.090.010140.010680.012310.012250.020060.018620.010900.02006
    A20 R30 L4-158.470.013160.010460.012090.012250.020060.010900.02006
    A20 R30 L4-257.540.012480.010030.011660.011820.019620.018090.010460.01962
    A20 R30 L4-358.080.012940.010250.013880.012030.019840.020930.02093
    A20 R30 L5-163.730.014670.021150.010940.018750.017440.008940.02115
    A20 R30 L5-268.550.015730.010250.012030.019840.018090.010030.01984
    A20 R30 L5-364.730.014930.010680.011660.011820.019620.017660.009810.01962
    Notes: fcc—Ultimate stress; εcu—Ultimate strain; εh,max—Maximal strain of FRP.
    下载: 导出CSV
  • [1] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12):1-11. doi: 10.15951/j.tmgcxb.2018.12.001

    TENG Jinguang. New material hybrid structures[J]. China Civil Engineering Journal,2018,51(12):1-11(in Chinese). doi: 10.15951/j.tmgcxb.2018.12.001
    [2] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8):1957-1967. doi: 10.13801/j.cnki.fhclxb.20181101.001

    JIANG Jiafei, SUI Kai. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1957-1967(in Chinese). doi: 10.13801/j.cnki.fhclxb.20181101.001
    [3] 马高, 邹雅峰, 何庆锋, 等. BFRP约束损伤钢筋混凝土圆柱轴压力学性能研究[J]. 建筑结构, 2021, 51(2):119-124. doi: 10.19701/j.jzjg.2021.02.020

    MA Gao, ZOU Yafeng, HE Qingfeng, et al. Study on axial compressive mechanical behavior of damaged reinforced concrete cylinder columns confined with BFRP[J]. Building Structure,2021,51(2):119-124(in Chinese). doi: 10.19701/j.jzjg.2021.02.020
    [4] 周长东, 白晓彬, 赵锋, 等. 预应力纤维布加固混凝土圆形截面短柱轴压性能试验[J]. 建筑结构学报, 2013, 34(2):131-140. doi: 10.14006/j.jzjgxb.2013.02.018

    ZHOU Changdong, BAI Xiaobin, ZHAO Feng, et al. Experimental study on axial compression behavior of concrete circular section short columns strengthened with prestressed fiber sheet[J]. Journal of Building Structure,2013,34(2):131-140(in Chinese). doi: 10.14006/j.jzjgxb.2013.02.018
    [5] 欧阳利军, 丁斌, 陆洲导, 等. 玄武岩纤维与碳纤维加固短柱抗震试验研究[J]. 同济大学学报(自然科学版), 2013, 41(2):166-172. doi: 10.3969/j.issn.0253-374x.2013.02.002

    OUYANG Lijun, DING Bin, LU Zhoudao, et al. Experimental study on seismic performance of short columns strengthened with BFRP and CFRP[J]. Journal of Tongji University (Natural Science Edition),2013,41(2):166-172(in Chinese). doi: 10.3969/j.issn.0253-374x.2013.02.002
    [6] ELISABETTA M, FRANCESCA N, GIUSEPPE V. Basalt-based fiber-reinforced materials and structural application in civil engineering[J]. Composite Structures,2019,214:246-263. doi: 10.1016/j.compstruct.2019.02.002
    [7] WANG B, BACHTIAR E V, YAN L B, et al. Flax, basalt, e-glass FRP and their hybrid FRP strengthened wood beams: An experimental study[J]. Polymers,2019,11(8):11081255.
    [8] CAO Y G, HOU C, LIU M Y, et al. Effects of predamage and load cyclic on compression behavior of fiber reinforced polymer-confined concrete[J]. Journal of Reinforced Plastics and Composites,2021,22(3):1784-1799.
    [9] OZBAKKALOGLU T. Axial compressive behavior of square and rectangular high-strength concrete-filled FRP tubes[J]. Journal of Composites for Construction,2013,17(1):151-161. doi: 10.1061/(ASCE)CC.1943-5614.0000321
    [10] ISLEEM H F, ABID M, ALALOUL W S, et al. Axial compres-sive strength models of eccentrically-loaded rectangular reinforced concrete columns confined with FRP[J]. Materials,2021,14(13):14133498.
    [11] OZBAKKALOGLU T, AKIN E. Behavior of FRP-confined normal and high-strength concrete under cyclic axial compression[J]. Journal of Composites for Construction,2012,16(4):451-463. doi: 10.1061/(ASCE)CC.1943-5614.0000273
    [12] LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete in rectangular columns[J]. Journal of Reinforced Plastics and Composites,2003,22(13):1149-1186. doi: 10.1177/0731684403035429
    [13] SALEEM S, HUSSAIN Q, PIMANMAS A. Compressive behavior of PET FRP confined circular, square, and rectangular concrete columns[J]. Journal of Composites for Construction,2016,21(3):04016097.
    [14] WANG Y L, LIU P, CAO Q, et al. Comparison of monotonic axial compressive behavior of rectangular concrete confined by FRP with different rupture stains[J]. Construction and Building Materials,2021,299:124241. doi: 10.1016/j.conbuildmat.2021.124241
    [15] BENZAID R, MESBAH H A. The confinement of concrete in compression using CFRP composites-effective design equations[J]. Journal of Civil Engineering and Management,2014,20(5):632-648. doi: 10.3846/13923730.2013.801911
    [16] HAN Q, YUAN W Y, BAI Y L, et al. Compressive behavior of large rupture strain (LRS) FRP-confined square concrete columns: Experimental study and model evaluation[J]. Materials and Structures,2020,53:99. doi: 10.1617/s11527-020-01534-4
    [17] TOUTANJI H, HAN M, GILBERT J, et al. Behavior of large-scale rectangular columns confined with FRP composites[J]. Journal of Composites for Construction,2010,14(1):62-71. doi: 10.1061/(ASCE)CC.1943-5614.0000051
    [18] WU Y F, WEI Y Y. Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns[J]. Engineering Structures,2010,32(1):32-45. doi: 10.1016/j.engstruct.2009.08.012
    [19] MOSTOFINEJAD D, MOSHIRI N, MORTAZAVI N. Effect of corner radius and aspect ratio on compressive behavior of rectangular concrete columns confined with CFRP[J]. Materials and Structures,2013,48(1-2):107-122.
    [20] PHAM T M, HADI M N S. Stress prediction model for FRP confined rectangular concrete columns with rounded corners[J]. Journal of Composites for Construction,2014,18(1):04013019. doi: 10.1061/(ASCE)CC.1943-5614.0000407
    [21] ZENG J J, DUAN Z J, GAO W Y, et al. Compressive behavior of FRP-wrapped seawater sea-sand concrete with a square cross-section[J]. Construction and Building Materials,2020,262:120881. doi: 10.1016/j.conbuildmat.2020.120881
    [22] WANG Z Y, WANG D Y, SMITH S T, et al. CFRP-confined square RC columns I: Experimental investigation[J]. Journal of Composites for Construction,2012,16(2):150-160. doi: 10.1061/(ASCE)CC.1943-5614.0000245
    [23] 杨俊龙, 王吉忠, 卢世伟, 等. FRP非均匀约束海水海砂混凝土方柱轴压性能[J]. 复合材料学报, 2022, 39(6):2777-2786. doi: 10.13801/j.cnki.fhclxb.20210708.004

    YANG Junlong, WANG Jizhong, LU Shiwei, et al. Axial compressive behavior of FRP nonuniformly wrapped seawater sea-sand concrete in square columns[J]. Acta Materiae Compositae Sinica,2022,39(6):2777-2786(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210708.004
    [24] FAUSTINO P, CHASTRE C, PAULA R. Design model for square RC columns under compression confined with CFRP[J]. Composites Part B: Engineering,2014,57:471-489.
    [25] HE W D, WANG X, MONIER A, et al. Shear behavior of RC beams strengthened with side-bonded BFRP grids[J]. Journal of Composites for Construction,2020,24(5):04020051. doi: 10.1061/(ASCE)CC.1943-5614.0001069
    [26] ELMESSALAMI N, ABED F, ELREFAI A. Response of concrete columns reinforced with longitudinal and transverse BFRP bars under concentric and eccentric loading[J]. Composite Structures,2021,255:113057. doi: 10.1016/j.compstruct.2020.113057
    [27] LU Z Y, SU L Z, XIAN G J, et al. Durability study of concrete-covered basalt fiber-reinforced polymer (BFRP) bars in marine environment[J]. Composite Structures,2020,234:111650. doi: 10.1016/j.compstruct.2019.111650
    [28] DIAB H M, SAYED A M. An anchorage for shear strengthening of RC T-beams using NSM-BFRP bars and BFRP sheet[J]. International Journal of Concrete Structures and Materials,2020,14(1):1-16. doi: 10.1186/s40069-020-00424-x
    [29] 欧阳利军, 许峰, 陆洲导. 玄武岩纤维布增强树脂基复合材料约束高温损伤混凝土轴压力学性能[J]. 复合材料学报, 2018, 35(8):2002-2013. doi: 10.13801/j.cnki.fhclxb.20170926.002

    OUYANG Lijun, XU Feng, LU Zhoudao. Axial compressive behavior of BFRP-confined damaged concrete after exposed to elevated temperatures[J]. Acta Materiae Compositae Sinica,2018,35(8):2002-2013(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170926.002
    [30] 张景杭, 夏樟华, 姜绍飞, 等. BFRP模壳加固混凝土墩柱抗震性能试验研究[J]. 建筑结构学报, 2021, 42(8):84-94. doi: 10.14006/j.jzjgxb.2019.0561

    ZHANG Jinghang, XIA Zhanghua, JIANG Shaofei, et al. Experimental study on seismic behavior of concrete pier columns strengthened with BFRP mould shell[J]. Journal of Building Structures,2021,42(8):84-94(in Chinese). doi: 10.14006/j.jzjgxb.2019.0561
    [31] SHEN D J, YANG Q, HUANG C B, et al. Tests on seismic performance of corroded reinforced concrete shear walls repaired with basalt fiber-reinforced polymers[J]. Construction and Building Materials,2019,209:508-521. doi: 10.1016/j.conbuildmat.2019.02.109
    [32] OUYANG L J, GAO W Y, ZHEN B, et al. Seismic retrofit of square reinforced concrete columns using basalt and carbon fiber-reinforced polymer sheets: A comparative study[J]. Composites Structures,2017,162:294-307. doi: 10.1016/j.compstruct.2016.12.016
    [33] 中华人民共和国住房和城乡建设部. 混凝土结构加固设计规范: GB/T 50367—2013[S]. 北京: 中国建筑工业出版社, 2014.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of strengthening of concrete structures: GB/T 50367—2013[S]. Beijing: China Building Industry Press, 2014(in Chinese).
    [34] 陈明秀. 混凝土结构表面粘贴FRP的加固效率研究[D]. 济南: 济南大学, 2012.

    CHEN Mingxiu. Study on strengthening efficiency of FRP bonded on the surface of concrete structure[D]. Jinan: Jinan University, 2012(in Chinese).
    [35] MOSTOFINEJAD D, MOSHIRI N, MORTAZAVI N. Effect of corner radius and aspect ratio on compressive behavior of rectangular concrete columns confined with CFRP[J]. Materials and Structures,2013,48(1):1-16.
    [36] ROCHETTE P, LABOSSIiÈRE P. Axial testing of rectangular column models confined with composites[J]. Journal of Composites for Construction,2000,4(3):129-136. doi: 10.1061/(ASCE)1090-0268(2000)4:3(129)
    [37] TENG J G, JIANG T, LAM L, et al. Refinement of a design-oriented stress-strain model for FRP-confined concrete[J]. Journal of Composites for Construction,2009,13(4):269-278. doi: 10.1061/(ASCE)CC.1943-5614.0000012
    [38] 刘鸿文. 材料力学[M]. 北京: 高等教育出版社, 2011: 14-16.

    LIU Hongwen. Mechanics of materials[M]. Beijing: Higher Education Press, 2011: 14-16(in Chinese).
    [39] 中华人民共和国住房和城乡建设部. 纤维增强复合材料建设工程应用技术规范: GB/T 50608—2010[S]. 北京: 中国计划出版社, 2010.

    Ministry of Housing and Urban Rural Development of the People's Republic of China. Technical code for infrastructure application of FRP composites: GB/T 50608-2010[S]. Beijing: China Planning Press, 2010(in Chinese).
    [40] ACI Committee 440. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures: ACI 440.2R-08[S]. Farmington Hills: American Concrete Institute, 2008.
    [41] OZBAKKALOGLU T, JIAN C L, VINCENT T. FRP-confined concrete in circular sections: Review and assessment of stress-strain models[J]. Engineering Structures,2013,49(2):1068-1088.
    [42] HARAJLI M H, HANTOUCHE E, SOUDKI K. Stress-strain model for fiber-reinforced polymer jacketed concrete columns[J]. ACI Structural Journal,2006,103(5):672-682.
    [43] ROUSAKIS T C, KARABINIS A I, KIOUSIS P D. FRP-confined concrete members: Axial compression experiments and plasticity modelling[J]. Engineering Structures,2007,29(7):1343-1353.
    [44] MASIA M J, GALE T N, SHRIVE N G. Size effects in axially loaded square-section concrete prisms strengthened using carbon fibre reinforced polymer wrapping[J]. Canadian Journal of Civil Engineering,2004,31(1):1-13.
    [45] WANG L M, WU Y F. Effect of corner radius on the performance of CFRP-confined square concrete columns: Test[J]. Engineering Structures,2008,30(2):493-505.
    [46] ILKI A, KUMBASAR N. Compressive behaviour of carbon fibre composite jacketed concrete with circular and non-circular cross-sections[J]. Journal of Earthquake Engineering,2003,7(3):381-406.
    [47] AL-SALLOUM Y A. Influence of edge sharpness on the strength of square concrete columns con-fined with FRP composite laminates[J]. Composites Part B: Engineering,2007,38(5):640-650.
    [48] TAO Z, YU Q, ZHONG Y Z. Compressive behaviour of CFRP-confined rectangular concrete columns[J]. Magazine of Concrete Research,2008,60(10):735-745.
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  561
  • HTML全文浏览量:  204
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 修回日期:  2022-08-30
  • 录用日期:  2022-09-04
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回