留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

提升超疏水材料力学耐久性的研究进展

赵亚梅 霍梦丹 曹婷婷 丁思奇 陈丽

赵亚梅, 霍梦丹, 曹婷婷, 等. 提升超疏水材料力学耐久性的研究进展[J]. 复合材料学报, 2023, 40(4): 2004-2014. doi: 10.13801/j.cnki.fhclxb.20220923.001
引用本文: 赵亚梅, 霍梦丹, 曹婷婷, 等. 提升超疏水材料力学耐久性的研究进展[J]. 复合材料学报, 2023, 40(4): 2004-2014. doi: 10.13801/j.cnki.fhclxb.20220923.001
ZHAO Yamei, HUO Mengdan, CAO Tingting, et al. Progress in improving the mechanical durability of superhydrophobic materials[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2004-2014. doi: 10.13801/j.cnki.fhclxb.20220923.001
Citation: ZHAO Yamei, HUO Mengdan, CAO Tingting, et al. Progress in improving the mechanical durability of superhydrophobic materials[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2004-2014. doi: 10.13801/j.cnki.fhclxb.20220923.001

提升超疏水材料力学耐久性的研究进展

doi: 10.13801/j.cnki.fhclxb.20220923.001
基金项目: 国家自然科学基金(22008187);国家级大学生创新创业训练计划项目(2021107009035);陕西省自然科学基础研究计划项目(2022 JQ-558)
详细信息
    通讯作者:

    赵亚梅,博士,教授,硕士生导师,研究方向为超疏水材料的结构设计 E-mail: zhaoyameihp@126.com

  • 中图分类号: O647

Progress in improving the mechanical durability of superhydrophobic materials

Funds: National Natural Science Foundation of China (22008187); National College Students' Innovation and Entrepreneurship Training Program (2021107009035); Scientific Research Program Funded Natural Science Basic Research Program of Shaanxi (2022 JQ-558)
  • 摘要: 超疏水材料因其独特的润湿性被广泛应用于防污防腐、水下减阻及油水分离等众多领域。然而,大多数超疏水材料在受到外界机械磨损后,容易造成其表面的微观结构塌陷或者低表面能物质消耗,而影响或丧失超疏水性能。通过对表面润湿模型的分析,阐明了两条增强超疏水材料力学耐久性的主体思路,并介绍了超疏水材料力学耐久性的典型测试方法及其特点;其次,基于国内外研究现状和发展趋势的分析与梳理,归纳了4种提升超疏水材料力学耐久性的策略,分别为设计微纳米多级粗糙结构、引入高分子粘结层、构建自相似结构及自修复功能化;最后,总结了提升超疏水材料力学耐久性所面临的挑战,并展望了其未来的发展前景。

     

  • 图  1  力学耐久型超疏水材料的制备方法

    Figure  1.  Preparation methods of mechanically durable superhydrophobic materials

    图  2  (a) 光滑表面润湿状态;(b) Wenzel状态;(c) Cassie状态

    Figure  2.  (a) Wet state of smooth surface; (b) Wenzel state; (c) Cassie state

    γlg—Surface tension of liquid-gas interface; γgs—Surface tension of gas-solid interface; γsl—Surface tension of solid-liquid interface; θ0—Contact angle of smooth solid surface; θw—Contact angle in Wenzel state; θCB—Contact angle in Cassie state

    图  3  超疏水材料力学耐久性的常见评价方法:(a) 线性磨损测试[33];(b) 胶带剥离测试[34];(c) 水流冲击测试[35]

    Figure  3.  Common evaluation methods for mechanical durability of superhydrophobic materials: (a) Linear abrasion test[33]; (b) Tape peel test[34]; (c) Water impact test[35]

    图  4  铠甲框架超疏水材料[44]:(a) 制备示意图;(b) 普通超疏水材料磨损示意图;(c) 铠甲框架超疏水材料磨损示意图

    Figure  4.  Armor frame superhydrophobic material[44]: (a) Preparation diagram; (b) Wear diagram of ordinary superhydrophobic material; (c) Wear diagram of superhydrophobic material of armor frame

    图  5  微骨架-纳米填充物超疏水材料[46]:(a) 制备示意图;(b) SEM图像;(c) 磨损后表面润湿情况

    Figure  5.  Micro-skeleton-nano-filler superhydrophobic material[46]: (a) Schematic diagram of preparation; (b) SEM images; (c) Surface wetting after wear

    CA—Contact angle; SA—Rolling angle

    图  6  硅烷化聚丙烯酸酯(CPSA)/SiO2超疏水材料的制备示意图[52]

    Figure  6.  Preparation schematic diagram of crosslinked silanized polyacrylate (CPSA)/SiO2 superhydrophobic materials[52]

    BA—Butyl acrylate; MMA—Methyl methacrylate; VTMS—Vinyltrimethoxysilane; AIBN—2,2'-azobis(2-methylpropionitrile); PSA—Silanized polyacrylate; DBTDL—Dibutyltin dilaurate

    图  7  机械磨损对自相似超疏水材料的影响[59]:(a) 机制示意图;(b) 磨损前;(c) 磨损后

    Figure  7.  Effect of mechanical wear on self-similar superhydrophobic material[59]: (a) Schematic diagram of mechanism; (b) Before wear; (c) After wear

    图  8  微纳米结构自修复示意图[67]

    Figure  8.  Schematic diagram of self-healing of micro-nano structure[67]

    图  9  微纳米结构和低表面能物质双重自修复示意图[75]

    Figure  9.  Schematic diagram of the dual self-healing of micro-nano structures and low surface energy substances[75]

    表  1  不同制备策略下超疏水表面抗磨损性能比较

    Table  1.   Comparison of abrasion resistance of superhydrophobic surfaces under different preparation strategies

    Preparation strategiesSurfacesLoad/kPaFriction distance/cmRef.
    Micro-nano multi-level structureSiO2/Si substrate120001500[44]
    SiO2/Fabric3.2160[45]
    SiO2/F-epoxy12.2550000[46]
    Polymer adhesive layerCaCO3/Glue10300[50]
    Al2O3/Epoxy52000[51]
    SiO2/CPSA101400[52]
    下载: 导出CSV

    表  2  不同力学耐久性提升策略的原理及优缺点比较

    Table  2.   Comparison of principles and advantages and disadvantages of different mechanical durability improvement strategies

    StrategiesPrinciplesAdvantagesDisadvantages
    Micro-nano multi-level structureNanoscale structures protected from
    damage by microscale structures
    Well mechanical durability, good superhydrophobicityNanoparticles are easy to fall off, high cost, difficult to be widely used
    Polymer adhesive layerIntermolecular forces among adhesive
    layer, substrate and surface
    Good adhesion, high peeling resistance, mass productionThe superhydrophobicity is slightly reduced, thicker coating
    Self-similar structureWhole matter consists of microstructures
    with low surface energy
    The new surface remains superhydrophobic after abrasionWaste of materials, depend on the stability of the material, limited in application
    Self-healing materialsRepair of micro-nano rough structures or migration of low surface energy substancesSelf-healing after local da-
    mage, long service life
    Poor abrasion resistance, strict healing condition
    下载: 导出CSV
  • [1] NI Y M, HUANG J Y, LI S H, et al. Underwater, multifunctional superhydrophobic sensor for human motion detection[J]. ACS Applied Materials & Interfaces,2021,13(3):4740-4749.
    [2] WANG P, LI Z Q, XIE Q, et al. A passive anti-icing strategy based on a superhydrophobic mesh with extremely low ice adhesion strength[J]. Journal of Bionic Engineering,2021,18(1):55-64. doi: 10.1007/s42235-021-0012-4
    [3] ZHU P, ZHU L J, GE F F, et al. Sprayable superhydrophobic coating with high mechanical/chemical robustness and anti-corrosion[J]. Surface & Coatings Technology,2022,443:128609. doi: 10.1016/j.surfcoat.2022.128609
    [4] LIU Y, GU H M, JIA Y, et al. Design and preparation of biomimetic polydimethylsiloxane (PDMS) films with superhydrophobic, self-healing and drag reduction properties via replication of shark skin and SI-ATRP[J]. Chemical Engineering Journal,2019,356:318-328. doi: 10.1016/j.cej.2018.09.022
    [5] NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent self-cleaning plant surfaces[J]. Annals of Botany,1997,79(6):667-677. doi: 10.1006/anbo.1997.0400
    [6] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta,1997,202(1):1-8. doi: 10.1007/s004250050096
    [7] TAN X H, ZHANG Y Z, LIU X Y. Employing micro pyramidal holes and porous nanostructures for enhancing the durability of lubricant-infused surfaces in anti-icing[J]. Surface & Coatings Technology,2021,405:126568.
    [8] LI D W, WANG H Y, YANG L, et al. Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance[J]. Chemical Engineering Journal,2019,367:169-179. doi: 10.1016/j.cej.2019.02.093
    [9] YONG J L, YANG Q, HUO J L, et al. Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 µm) for bubble/gas manipulation[J]. International Journal of Extreme Manufacturing,2022,4:015002. doi: 10.1088/2631-7990/ac466f
    [10] GORE P M, NAEBE M, WANG X G, et al. Nano-fluoro dispersion functionalized superhydrophobic degummed & waste silk fabric for sustained recovery of petroleum oils & organic solvents from wastewater[J]. Journal of Hazardous Materials,2022,426:127822. doi: 10.1016/j.jhazmat.2021.127822
    [11] BINYASEEN A M, BAYAZEED A, AL-NAMI A Y, et al. Development of epoxy/rice straw-based cellulose nanowhiskers composite smart coating immobilized with rare-earth doped aluminate: Photoluminescence and anticorrosion properties for sustainability[J]. Ceramics International,2022,48:4841-4850. doi: 10.1016/j.ceramint.2021.11.020
    [12] SABYASACHI G, NITIN B, SANJAY R, et al. A multifunctional smart textile derived from merino wool/nylon polymer nanocomposites as next generation microwave absorber and soft touch sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17988-18001.
    [13] 王瑞洁, 焦小雨, 潘宇, 等. 透明抗静电多功能超疏水薄膜的制备[J]. 高等学校化学学报, 2022, 43(3):158-164.

    WANG Ruijie, JIAO Xiaoyu, PAN Yu, et al. Preparation of transparent antistatic multifunctional superhydrophobic film[J]. Chemical Journal of Chinese Universities,2022,43(3):158-164(in Chinese).
    [14] PAKDEL E, WANG J F, KASHI S, et al. Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments[J]. Advances in Colloid and Interface Science,2020,277:102116. doi: 10.1016/j.cis.2020.102116
    [15] WU T, XU W H, GUO K, et al. Efficient fabrication of lightweight polyethylene foam with robust and durable superhydrophobicity for self-cleaning and anti-icing applications[J]. Chemical Engineering Journal,2021,407:127100. doi: 10.1016/j.cej.2020.127100
    [16] YANG C, ZENG Q H, HUANG J X, et al. Droplet manipulation on superhydrophobic surfaces based on external stimulation: A review[J]. Advances in Colloid and Interface Science,2022,306:102724. doi: 10.1016/j.cis.2022.102724
    [17] 邢清松, 陈旭龙, 陶嘉宇, 等. 超声辅助制备超疏水聚丙烯表面花瓣状微纳结构[J]. 高分子学报, 2022, 53(6):645-652. doi: 10.11777/j.issn1000-3304.2021.21403

    XING Qingsong, CHEN Xulong, TAO Jiayu, et al. Ultrasonic assisted preparation of superhydrophobic polypropylene with flower-like micro-/nanostructure on surfaces[J]. Acta Polymerica Sinica,2022,53(6):645-652(in Chinese). doi: 10.11777/j.issn1000-3304.2021.21403
    [18] LI B Z, OUYANG Y B, HAIDER Z H, et al. One-step electrochemical deposition leading to superhydrophobic matrix for inhibiting abiotic and microbiologically influenced corrosion of Cu in seawater environment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,616:126337. doi: 10.1016/j.colsurfa.2021.126337
    [19] REN Z, GANG W, GUO Z. Biomimetic high-intensity superhydrophobic metal rubber with anti-corrosion property for industrial oil-water separation[J]. New Journal of Chemistry,2019,43:1894-1899. doi: 10.1039/C8NJ04907F
    [20] SHAO Y L, ZHAO J, FAN Y, et al. Shape memory superhydrophobic surface with switchable transition between “Lotus Effect” to “Rose Petal Effect”[J]. Chemical Engineering Journal,2020,382:122989. doi: 10.1016/j.cej.2019.122989
    [21] LI B, LUO J C, HUANG X W, et al. A highly stretchable, superhydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring[J]. Composites Part B: Engineering,2020,181:107580. doi: 10.1016/j.compositesb.2019.107580
    [22] GONG X, HE S. Highly durable superhydrophobic polydimethylsiloxane/silica nanocomposite surfaces with good self-cleaning ability[J]. ACS Omega,2020,5:4100-4108. doi: 10.1021/acsomega.9b03775
    [23] WANG N, TANG L, TONG W, et al. Fabrication of robust and scalable superhydrophobic surfaces and investigation of their anti-icing properties[J]. Materials & Design,2018,56:320-328.
    [24] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London,1800,1:171-172. doi: 10.2307/107159
    [25] WENZEL R N. Resistance of solid surface to wetting by water[J]. Industrial and Engineering Chemistry,1936,28:988-994. doi: 10.1021/ie50320a024
    [26] CASSIE A B D. Contact angles[J]. Discussions of the Faraday Society,1948,3:1-6. doi: 10.1039/df9480300001
    [27] CASSIE A B D, BAXTER S. Wettability of porous surface[J]. Transactions of the Faraday Society,1944,40:546-550. doi: 10.1039/tf9444000546
    [28] REZAYI T, ENTEZARI M H. Toward a durable superhydrophobic aluminum surface by etching and ZnO nanoparticle deposition[J]. Journal of Colloid and Interface Science,2016,463:37-45. doi: 10.1016/j.jcis.2015.10.029
    [29] LAMBLEY H, SCHUTZIUS T M, POULIKAKOS D. Superhydrophobic surfaces for extreme environmental conditions[J]. Proceedings of the National Academy of Sciences,2020,117(44):27188-27194. doi: 10.1073/pnas.2008775117
    [30] SU F, YAO K. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method[J]. ACS Applied Materials & Interfaces,2014,6(11):8762-8770.
    [31] DENG X, MAMMEN L, BUTT H J, et al. Candle soot as a template for a transparent robust superamphiphobic coating[J]. Science,2012,335(6064):67-70. doi: 10.1126/science.1207115
    [32] ZHAO X, WEI J, LI B, et al. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy[J]. Journal of Colloid and Interface Science,2020,575:140-149. doi: 10.1016/j.jcis.2020.04.097
    [33] TIAN X, VERHO T, RAS R H. Moving superhydrophobic surfaces toward real-world applications[J]. Science,2016,352(6282):142-143. doi: 10.1126/science.aaf2073
    [34] PENG C Y, CHEN Z Y, TIWARI M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials,2018,17(4):355-360. doi: 10.1038/s41563-018-0044-2
    [35] JUNG Y C, BHUSHAN B. Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag[J]. ACS Nano,2009,3(12):4155-4163. doi: 10.1021/nn901509r
    [36] GE M Z, CAO C Y, LIANG F H, et al. A "PDMS-in-water" emulsion enables mechanochemically robust superhydrophobic surfaces with self-healing nature[J]. Nanoscale Horizons,2020,5(1):65-73. doi: 10.1039/C9NH00519F
    [37] ZHANG J J, WEI J F, LI B C, et al. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite[J]. Journal of Colloid and Interface Science,2021,594:836-847. doi: 10.1016/j.jcis.2021.03.005
    [38] WANG H D, XUE C H, GUO X J, et al. Superhydrophobic porous film for daytime radiative cooling[J]. Applied Materials Today,2021,24:101100. doi: 10.1016/j.apmt.2021.101100
    [39] 胡云浩, 石晓凯, 马小凡, 等. 硅橡胶表面原位生长ZnO纳米花构筑稳固超疏水表面[J]. 复合材料学报, 2022, 39(4):1638-1647.

    HU Yunhao, SHI Xiaokai, MA Xiaofan, et al. Mechanically stable superhydrophobic surface fabricated by self-growth of ZnO nanoflowers on vulcanized silicone rubber[J]. Acta Materiae Compositae Sinica,2022,39(4):1638-1647(in Chinese).
    [40] LI N, KUANG J, REN Y F, et al. Fabrication of transparent super-hydrophilic coatings with self-cleaning and anti-fogging properties by using dendritic nano-silica[J]. Ceramics Intertional,2021,47(13):18743-18750. doi: 10.1016/j.ceramint.2021.03.209
    [41] MORA L V, TAYLOR A, PAUL S, et al. Impact of silica nanoparticles on the morphology and mechanical properties of sol-gel derived coatings[J]. Surface & Coatings Technology,2018,342:45-56.
    [42] ZHANG L P, XUE X X, ZHANG H. et al. Superhydrophobic surface with excellent mechanical robustness, water impact resistance and hydrostatic pressure resistance by two-step spray-coating technique[J]. Composites Part A: Applied Science and Manufacturing,2021,146:106405. doi: 10.1016/j.compositesa.2021.106405
    [43] ZHANG Q C, YANG X H, LI P, et al. Bioinspired engineering of honeycomb structure—Using nature to inspire human innovation[J]. Progress in Materials Science,2015,74:332-400. doi: 10.1016/j.pmatsci.2015.05.001
    [44] WANG D H, SUN Q Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature,2020,582(7810):55-59. doi: 10.1038/s41586-020-2331-8
    [45] NGUYEN-TRI P, ALTIPARMAK F, NUGYEN N, et al. Robust superhydrophobic surface with reinforced skeletons for corrosion protection[J]. ACS Omega,2019,4(4):7829-7837. doi: 10.1021/acsomega.9b00688
    [46] QING Y Q, SHI S L, LV C J, et al. Microskeleton nanofiller composite with mechanical super-robust superhydrophobicity against abrasion and impact[J]. Advanced Functional Materials,2020,30(39):1910665. doi: 10.1002/adfm.201910665
    [47] 徐达, 肖振, 余新泉, 等. 多功能疏水/超疏水复合涂层的制备及其防覆冰性[J]. 复合材料学报, 2022, 39(3):1102-1109. doi: 10.13801/j.cnki.fhclxb.20210513.004

    XU Da, XIAO Zhen, YU Xinquan, et al. Preparation and anti-icing characteristics of multifunctional hydrophobic/superhydrophobic composite coating[J]. Acta Materiae Compositae Sinica,2022,39(3):1102-1109(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210513.004
    [48] ZHAO Y M, HUO M D, HUO J H, et al. Preparation of silica-epoxy superhydrophobic coating with mechanical stability and multifunctional performance via one-step approach[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,653:129957. doi: 10.1016/j.colsurfa.2022.129957
    [49] SHAO H, YU Y L, LI Y S, et al. Building a mechanically stable polydimethylsiloxane/silica superhydrophobic coating on poly(chloro-p-xylylene) film by introducing a polydimethylsiloxane adhesive layer[J]. Surface and Coating Technology,2018,350:201-210. doi: 10.1016/j.surfcoat.2018.07.022
    [50] CHEN B Y, QIU J H, SAKAI E, et al. Robust and superhydrophobic surface modification by a “paint+adhesive” method: Applications in self-cleaning after oil contamination and oil-water separation[J]. ACS Applied Materials & Interfaces,2016,8(27):17659-17667.
    [51] WU B R, LU J J, PENG C Y, et al. Inverse infusion processed hierarchical structure towards superhydrophobic coatings with ultrahigh mechanical robustness[J]. Chemical Engineering Journal,2020,387:124066. doi: 10.1016/j.cej.2020.124066
    [52] ZHU B, LIU J, CHEN Y, et al. Superhydrophobic coating with multiscale structure based on crosslinked silanized polyacrylate and nanoparticles[J]. Surface and Coatings Technology,2017,331(12):40-47.
    [53] 张红亮, 赵国庆, 欧军飞, 等. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2):114-122.

    ZHANG Hongliang, ZHAO Guoqing, OU Junfei, et al. Superhydrophobic cotton fabric based on polydopamine via simple one-pot immersion for oil water separation[J]. Chinese Journal of Materials Research,2022,36(2):114-122(in Chinese).
    [54] YAP S W, JOHARI N, MAZLAN S A, et al. Mechanochemical durability and self-cleaning performance of zinc oxide-epoxy superhydrophobic coating prepared via a facile one-step approach[J]. Ceramics International,2021,47(11):15825-15833. doi: 10.1016/j.ceramint.2021.02.156
    [55] DAS I, DE G. Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use[J]. Scientific Reports,2015,5:18503-18514.
    [56] GAO J F, WANG L, GUO Z, et al. Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications[J]. Chemical Engineering Journal,2020,381:122778. doi: 10.1016/j.cej.2019.122778
    [57] XU Y, WANG G, ZHU L J, et al. Multifunctional superhydrophobic adsorbents by mixed-dimensional particles assembly for polymorphic and highly efficient oil-water separation[J]. Journal of Hazardous Materials,2021,407:124374. doi: 10.1016/j.jhazmat.2020.124374
    [58] DUAN H N, LYU H H, SHEN B X, et al. Superhydrophobic-superoleophilic biochar-based foam for high-efficiency and repeatable oil-water separation[J]. Science of the Total Environment,2021,782:146517.
    [59] DAVIS A, SURDO S, CAPUTO G, et al. Environmentally benign production of stretchable and robust superhydrophobic silicone monoliths[J]. ACS Applied Materials & Interfaces,2018,10(3):2907-2917.
    [60] ZHANG X D, GUO Y, CHEN H, et al. A novel damage-tolerant superhydrophobic and superoleophilic material[J]. Journal of Materials Chemistry A,2014,2(24):9002-9006. doi: 10.1039/C4TA00869C
    [61] ZHANG Y H, LIU J W, OUYANG L J, et al. One-step preparation of robust superhydrophobic foam for oil/water separation by pulse electrodeposition[J]. Langmuir,2021,37(23):7043-7054. doi: 10.1021/acs.langmuir.1c00640
    [62] LV J, GUO Z J, HE Z K, et al. 3D printing of a mechanically durable superhydrophobic porous membrane for oil-water separation[J]. Journal of Materials Chemistry A,2017,5:12435-12444. doi: 10.1039/C7TA02202F
    [63] YONG J L, CHEN F, YAO F, et al. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles[J]. ACS Applied Materials & Interfaces,2017,9(45):39863-39871.
    [64] ZHANG D J, CHENG Z J, KANG H J, et al. A smart superwetting surface with responsivity in both surface chemistry and microstructure[J]. Angewandte Chemie,2018,130(14):3701-3705.
    [65] 鲁浈浈, 唐超, 梁杨, 等. 自相似双层结构自修复超疏水涂层的制备及性能[J]. 表面技术, 2022, 51(2):392-401. doi: 10.16490/j.cnki.issn.1001-3660.2022.02.040

    LU Zhenzhen, TANG Chao, LIANG Yang, et al. Preparation and performance of self-repairing superhydrophobic coating with self-similar double-layer structure[J]. Surface Technology,2022,51(2):392-401(in Chinese). doi: 10.16490/j.cnki.issn.1001-3660.2022.02.040
    [66] 曹祥康, 孙晓光, 肖松, 等. 聚苯并噁嗪基三维超疏水涂层的制备及抗磨损腐蚀性能[J]. 复合材料学报, 2022, 39(2):617-627. doi: 10.13801/j.cnki.fhclxb.20210407.002

    CAO Xiangkang, SUN Xiaoguang, XIAO Song, et al. Preparation and anti-wearing and anti-corrosion properties of 3D superhydrophobic coating based on poly-benzoxazine[J]. Acta Materiae Compositae Sinica,2022,39(2):617-627(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210407.002
    [67] GUO X J, XUE C H, SATHASIVAM S, et al. Fabrication of robust superhydrophobic surfaces via aerosol-assisted CVD and thermo-triggered healing of superhydrophobicity by recovery of roughness structures[J]. Journal of Materials Chemistry A,2019,7:17604-17612. doi: 10.1039/C9TA03264A
    [68] MANNA U, LYNN D M. Restoration of superhydrophobicity in crushed polymer films by treatment with water: Self-healing and recovery of damaged topographic features aided by an unlikely source[J]. Advanced Materials,2013,25(36):5104-5108. doi: 10.1002/adma.201302217
    [69] CAO C Y, YI B, ZHANG J Q, et al. Sprayable superhydrophobic coating with high processibility and rapid damage-healing nature[J]. Chemical Engineering Journal,2020,392:124834. doi: 10.1016/j.cej.2020.124834
    [70] ZHANG Z, XUE F, BAI W X, et al. Superhydrophobic surface on Al alloy with robust durability and excellent self-healing performance[J]. Surface and Coatings Technology,2021,410(12):126952.
    [71] LI W, ZHANG X H, YU X F, et al. Near infrared light responsive self-healing superhydrophobic coating based on solid wastes[J]. Journal of Colloid and Interface Science,2020,560:198-207. doi: 10.1016/j.jcis.2019.10.072
    [72] FU K, LU C, LIU Y B, et al. Mechanically robust, self-healing superhydrophobic anti-icing coatings based on a novel fluorinated polyurethane synthesized by a two-step thiol click reaction[J]. Chemical Engineering Journal,2021,404:127110. doi: 10.1016/j.cej.2020.127110
    [73] CHEN K L, GOU W W, XU L, et al. Low cost and facile preparation of robust multifunctional coatings with self-healing superhydrophobicity and high conductivity[J]. Composites Science and Technology,2018,156:177-185. doi: 10.1016/j.compscitech.2017.12.036
    [74] NI X X, GAO Y J, ZHANG X H, et al. An eco-friendly smart self-healing coating with NIR and pH dual-responsive superhydrophobic properties based on biomimetic stimuli-responsive mesoporous polydopamine microspheres[J]. Chemical Engineering Journal,2021,406:126725. doi: 10.1016/j.cej.2020.126725
    [75] PAN S Y, CHEN M, WU L M. Smart superhydrophobic surface with restorable microstructure and self-healable surface chemistry[J]. ACS Applied Materials & Interfaces,2020,12:5157-5165.
    [76] FU Y H, XU F C, WENG D H, et al. Superhydrophobic foams with chemical- and mechanical-damage-healing abilities enabled by self-healing polymers[J]. ACS Applied Materials & Interfaces,2019,11(40):37285-37294.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  917
  • HTML全文浏览量:  284
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 修回日期:  2022-08-22
  • 录用日期:  2022-09-10
  • 网络出版日期:  2022-09-26
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回