留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竹纤维和海藻酸钠提升聚乳酸的降解性能

柴喜存 周凌蕾 何春霞

柴喜存, 周凌蕾, 何春霞. 竹纤维和海藻酸钠提升聚乳酸的降解性能[J]. 复合材料学报, 2023, 40(6): 3553-3561. doi: 10.13801/j.cnki.fhclxb.20220901.003
引用本文: 柴喜存, 周凌蕾, 何春霞. 竹纤维和海藻酸钠提升聚乳酸的降解性能[J]. 复合材料学报, 2023, 40(6): 3553-3561. doi: 10.13801/j.cnki.fhclxb.20220901.003
CHAI Xicun, ZHOU Linglei, HE Chunxia. Study on bamboo fiber and sodium alginate enhancing the degradability of polylactic acid[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3553-3561. doi: 10.13801/j.cnki.fhclxb.20220901.003
Citation: CHAI Xicun, ZHOU Linglei, HE Chunxia. Study on bamboo fiber and sodium alginate enhancing the degradability of polylactic acid[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3553-3561. doi: 10.13801/j.cnki.fhclxb.20220901.003

竹纤维和海藻酸钠提升聚乳酸的降解性能

doi: 10.13801/j.cnki.fhclxb.20220901.003
基金项目: 自治区区域协同创新专项(2019 E0241);江苏省研究生科研与实践创新计划项目(KYCX21_0574)
详细信息
    通讯作者:

    何春霞,博士,教授,博士生导师,研究方向为新型工程材料、可降解高分子材料 E-mail: chunxiahe@tom.com

  • 中图分类号: TB332

Study on bamboo fiber and sodium alginate enhancing the degradability of polylactic acid

Funds: Regional Cooperative Innovation in Autonomous Region (2019 E0241); Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21_0574)
  • 摘要: 为提高聚乳酸(PLA)的降解性,将竹纤维(BF)和海藻酸钠(SA)与PLA共混制备复合材料,并进行土壤降解试验以探究其降解性能,检测降解后复合材料的质量损失率、表面微观结构、官能团变化、热性能和结晶度等指标。结果表明:SA和BF均可提升PLA复合材料降解的质量损失率。降解21天后,BF/PLA和SA-BF/PLA复合材料的质量损失率分别为0.83%和2.54%,相较于纯PLA的0.11%分别提高了7.55和23.09倍。降解后,SA-BF/PLA复合材料的表面出现大量的裂痕与凹陷,这增大了复合材料与土壤中的接触面积,进而加速了复合材料的降解。纯PLA在降解过程中质量损失率很低,但降解后其羰基含量明显上升,表明土壤降解会导致部分PLA长链高分子断裂为小分子。相比于纯PLA,BF/PLA和SA-BF/PLA复合材料的结晶度大幅度降低,表明SA和BF可降低PLA复合材料的结晶度,提高其降解性。由此可见,SA和BF可提升PLA复合材料的降解性能。此研究结果将为高降解性PLA复合材料的制备提供理论参考。

     

  • 图  1  土壤降解过程中聚乳酸(PLA)、竹纤维(BF)/PLA、海藻酸钠(SA)-BF/PLA复合材料的质量损失率

    Figure  1.  Msss loss rate of polylactic acid (PLA), bamboo fiber (BF)/PLA, sodium alginate (SA)-BF/PLA composites during degradation

    图  2  降解前后不同PLA复合材料试样照片

    Figure  2.  Pictures of different PLA composites before/after degradation

    图  3  土壤降解对PLA复合材料力学性能的影响:(a) 拉伸强度;(b) 弯曲强度;(c) 冲击强度;(d) 硬度

    Figure  3.  Effects of soil degradation on mechanical properties of PLA composites: (a) Tensile strength; (b) Flexural strength; (c) Impact strength; (d) Rockwell hardness

    图  4  土壤降解后不同PLA复合材料接触角的变化

    Figure  4.  Changes of contact angle of different PLA composites after soil degradation

    图  5  土壤降解对不同PLA复合材料表面微观结构的影响

    Figure  5.  Effects of soil degradation on microstructure of different PLA composites

    图  6  土壤降解后不同PLA复合材料和原材料的FTIR图谱:(a) PLA;(b) BF/PLA;(c) SA-BF/PLA;(d) 原材料

    Figure  6.  FTIR spectra of different PLA composites after degradation and the raw materials: (a) PLA; (b) BF/PLA; (c) SA-BF/PLA; (d) Raw materials

    图  7  土壤降解对不同PLA复合材料热性能的影响

    Figure  7.  Effects of soil degradation on thermal properties of different PLA composites

    *—Composites which were degradation for 21 days

    图  8  降解前后不同PLA复合材料的XRD图谱

    Figure  8.  XRD patterns of different PLA composites before/after soil degradation

    表  1  土壤降解前后不同PLA复合材料的热重分析数据

    Table  1.   Thermogravimetric analysis data of different PLA composites before/after soil degradation

    TreatmentsInitial temperature/℃Peak temperature/℃Final temperature/℃Residue at 800℃/%
    PLA349.5377.3384.05.51
    PLA*354.7376.7387.59.58
    BF/PLA331.8345.8358.415.79
    BF/PLA*346.6356.3368.417.64
    SA-BF/PLA304.3313.6331.419.19
    SA-BF/PLA*334.8343.3361.017.58
    下载: 导出CSV
  • [1] LIM L T, AURAS R, RUBINO M. Processing technologies for poly (lactic acid)[J]. Progress in Polymer Science,2008,33(8):820-852. doi: 10.1016/j.progpolymsci.2008.05.004
    [2] 黄子翔, 刘一帆, 王越, 等. 可降解聚乳酸复合膜的制备与性能表征[J]. 塑料, 2021, 50(1):117-122.

    HUANG Zixiang, LIU Yifan, WANG Yue, et al. Preparation and performance characterization of biodegradable poly(lactic acid) composite membrane[J]. Plastics,2021,50(1):117-122(in Chinese).
    [3] NASER A Z, DEIAB I, DARRAS B M. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review[J]. RSC Advances,2021,11(28):17151-17196. doi: 10.1039/D1RA02390J
    [4] NIKOLAIVITS E, PANTELIC B, AZEEM M, et al. Progressing plastics circularity: A review of mechano-biocatalytic approaches for waste plastic (Re) valorization[J]. Frontiers in Bioengineering and Biotechnology,2021,9:1-31. doi: 10.12970/2311-1755.2021.09.01
    [5] 白聪艳, 张宏, 魏小红. 微生物对聚乙烯塑料的降解性能研究[J]. 山东化工, 2022, 51(2):42-44. doi: 10.3969/j.issn.1008-021X.2022.02.013

    BAI Congyan, ZHANG Hong, WEI Xiaohong. Study of microbial degradation performance of polyethylene plastics baiconyan[J]. Shangdong Chemical Industry,2022,51(2):42-44(in Chinese). doi: 10.3969/j.issn.1008-021X.2022.02.013
    [6] ARMENTANO I, BITINIS N, FORTUNATI E, et al. Multifunctional nanostructured PLA materials for packaging and tissue engineering[J]. Progress in Polymer Science,2013,38(10-11):1720-1747. doi: 10.1016/j.progpolymsci.2013.05.010
    [7] RAMESHKUMAR S, SHAIJU P, O'CONNOR K E, et al. Bio-based and biodegradable polymers-State-of-the-art, challenges and emerging trends[J]. Current Opinion in Green and Sustainable Chemistry,2020,21:75-81. doi: 10.1016/j.cogsc.2019.12.005
    [8] YANG N, SUN Z X, FENG L S, et al. Plastic film mulching for water-efficient agricultural applications and degradable films materials development research[J]. Materials and Manufacturing Processes,2015,30(2):143-154. doi: 10.1080/10426914.2014.930958
    [9] 陈倩, 曾威, 石伊康, 等. 接枝细菌纤维素改性聚乳酸复合材料的制备与性能[J]. 复合材料学报, 2023, 40(3):1430-1437.

    CHEN Qian, ZENG Wei, SHI Yikang, et al. Preparation and properties of polylactic acid composite modified by bacterial cellulose[J]. Acta Materiae Compositae Sinica,2023,40(3):1430-1437(in Chinese).
    [10] SUN C, WEI S Y, TAN H Y, et al. Progress in upcycling polylactic acid waste as an alternative carbon source: A review[J]. Chemical Engineering Journal,2022,446:1-21.
    [11] 沈一丁, 赖小娟, 王磊. 聚乳酸/乙基纤维素复合膜的制备及其性能[J]. 复合材料学报, 2007, 24(3):40-44. doi: 10.3321/j.issn:1000-3851.2007.03.008

    SHEN Y D, LAI X J, WANG L. Preparation and properties of poly(lactic acid)/ethyl cellulose composite films[J]. Acta Materiae Compositae Sinica,2007,24(3):40-44(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.03.008
    [12] SUN J Y, SHEN J J, CHEN S K, et al. Nanofiller reinforced biodegradable PLA/PHA composites: Current status and future trends[J]. Polymers,2018,10(5):1-22.
    [13] JEON B, HAN J W, LEE K S, et al. Improvement of the mechanical properties of biodegradable polymers using a microcellular foaming process and natural by-products[J]. Polymer-Plastics Technology and Engineering,2012,51(4):401-406. doi: 10.1080/03602559.2011.639835
    [14] PATTANASUTTICHONLAKUL W, SOMBATSOMPOP N, PRAPAGDEE B. Accelerating biodegradation of PLA using microbial consortium from dairy wastewater sludge combined with PLA-degrading bacterium[J]. International Biodeterioration & Biodegradation,2018,132:74-83.
    [15] YAACOB N D, ISMAIL H, TING S S. Soil burial of polylactic acid/paddy straw powder biocomposite[J]. Bioresources,2016,11(1):1255-1269.
    [16] 崔晓霞, 曲萍, 陈品, 等. 可生物降解聚乳酸/纳米纤维素复合材料的亲水性和降解性[J]. 化工新型材料, 2010, 38(S1):107-109, 139. doi: 10.3969/j.issn.1006-3536.2010.z1.028

    CUI Xiaoxia, QU Ping, CHEN Pin, et al. Study on the degradation of cellulose nanowhiskers/poly(lactic acid) composites[J]. New Chemical Materials,2010,38(S1):107-109, 139(in Chinese). doi: 10.3969/j.issn.1006-3536.2010.z1.028
    [17] 中国国家标准化管理委员会. 塑料 拉伸性能的测定: GB/T 1040.1—2018[S]. 北京: 中国标准出版社, 2018.

    Standardization Administration of the People’s Republic of China. Plastics—Determination of tensile properties: GB/T 1040.1—2018[S]. Beijing: China Standards Press, 2018(in Chinese).
    [18] 中国国家标准化管理委员会. 塑料 弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics—Determination of flexural properties: GB/T 9341—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [19] 中国国家标准化管理委员会. 塑料 简支梁冲击性能的测定: GB/T 1043.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics—Determination of charpy impact properties: GB/T 1043.1—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [20] 中国国家标准化管理委员会. 塑料 硬度测定: GB/T 3398.2—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics—Determination of hardness: GB/T 3398.2—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [21] KONG X, JIN D C, JIN S L, et al. Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem[J]. Journal of Hazardous Materials,2018,353:142-150. doi: 10.1016/j.jhazmat.2018.04.015
    [22] LUO Y Y, ZHANG Y Y, XU Y B, et al. Distribution characteristics and mechanism of microplastics mediated by soil physicochemical properties[J]. Science of the Total Envi-ronment,2020,726:1-7.
    [23] 樊鑫炎, 黄俊雅, 杨炎晓, 等. 多功能CeO2/纤维素纳米纤维复合超疏水涂层的制备与性能[J]. 复合材料学报, 2023, 40(5): 3002-3017.

    FAN X Y, HUANG J Y, YANG Y X, et al. Fabrication and properties of multifunctional CeO2/cellulose nanofibers composite superhydrophobic coating[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 3002-3017.
    [24] FAKHRI L A, GHANBARZADEH B, DEHGHANNYA J, et al. Photo-catalytic and biotic degradation of polystyrene packaging film: Effect of zinc oxide photocatalyst nanoparticles and nanoclay[J]. Chemosphere,2021,283:130972.
    [25] 倪爱清, 张厉丰, 冀运东, 等. E玻璃纤维/乙烯基酯复合材料的氙灯老化性能研究[J]. 复合材料学报, 2013, 30(S1):33-39. doi: 10.13801/j.cnki.fhclxb.2013.s1.022

    NI A Q, ZHANG L F, JI Y D, et al. The study of artificial xenon arc lamp ageing on E-glass/vinyl ester composites[J]. Acta Materiae Compositae Sinica,2013,30(S1):33-39(in Chinese). doi: 10.13801/j.cnki.fhclxb.2013.s1.022
    [26] VALAPA R B, PUGAZHENTHI G, KATIYAR V. Hydrolytic degradation behaviour of sucrose palmitate reinforced poly(lactic acid) nanocomposites[J]. International Jour-nal of Biological Macromolecules,2016,89:70-80. doi: 10.1016/j.ijbiomac.2016.04.040
    [27] 常萧楠, 何春霞, 付菁菁, 等. 竹炭和壳聚糖对聚氯乙烯基木塑复合材料界面性能的影响[J]. 复合材料学报, 2016, 33(9):2022-2029. doi: 10.13801/j.cnki.fhclxb.20151109.002

    CHANG X N, HE C X, FU J J, et al. Effects of bamboo charcoal and chitosan on interfacial property of polyvinyl chloride based wood-plastic composites[J]. Acta Materiae Compositae Sinica,2016,33(9):2022-2029(in Chinese). doi: 10.13801/j.cnki.fhclxb.20151109.002
    [28] JIA H, ZHANG M, WENG Y X, et al. Degradation of polylactic acid/polybutylene adipate-co-terephthalate by coculture of Pseudomonas mendocina and Actinomucor elegans[J]. Journal of Hazardous Materials,2021,403:123679.
    [29] 祁睿格, 何春霞, 晋强. 麦秸/聚氯乙烯复合材料新疆户外老化性能[J]. 复合材料学报, 2019, 37(7):1539-1546. doi: 10.13801/j.cnki.fhclxb.20191113.003

    QI R G, HE C X, JIN Q. Outdoor exposure aging performance of wheat straw/polyvinyl chloride composites in Xinjiang[J]. Acta Materiae Compositae Sinica,2019,37(7):1539-1546(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191113.003
    [30] XIA L, LU S R, ZHONG B, et al. Effect of boron doping on waterproof and dielectric properties of polyborosiloxane coating on SiO2 f/SiO2 composites[J]. Chinese Journal of Aeronautics,2019,32(8):2017-2027. doi: 10.1016/j.cja.2018.11.008
    [31] CHAI X C, HE C X, LIU Y T, et al. Degradation of wheat straw/polylactic acid composites by Aspergillus niger[J]. Polymer Composites,2022,43(3):1823-1831. doi: 10.1002/pc.26500
    [32] CAI H, DAVE V, GROSS R A, et al. Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid)[J]. Journal of Polymer Science Part B-Polymer Physics,1996,34(16):2701-2708. doi: 10.1002/(SICI)1099-0488(19961130)34:16<2701::AID-POLB2>3.0.CO;2-S
    [33] ZHANG X Q, ESPIRITU M, BILYK A, et al. Morphological behaviour of poly(lactic acid) during hydrolytic degradation[J]. Polymer Degradation and Stability,2008,93(10):1964-1970. doi: 10.1016/j.polymdegradstab.2008.06.007
    [34] LV S S, GU J Y, GAO J, et al. Effect of annealing on the thermal properties of poly(lactic acid)/starch blends[J]. International Journal of Biological Macromolecules,2015,74:397-303. doi: 10.1016/j.ijbiomac.2014.12.023
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  752
  • HTML全文浏览量:  395
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 修回日期:  2022-08-08
  • 录用日期:  2022-08-26
  • 网络出版日期:  2022-09-02
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回