留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击作用下CFRP筋粘结式锚固系统力学性能的试验研究

方志 奉礼鑫 方亚威 王志伟 蒋正文

方志, 奉礼鑫, 方亚威, 等. 冲击作用下CFRP筋粘结式锚固系统力学性能的试验研究[J]. 复合材料学报, 2022, 39(11): 5287-5299. doi: 10.13801/j.cnki.fhclxb.20220811.001
引用本文: 方志, 奉礼鑫, 方亚威, 等. 冲击作用下CFRP筋粘结式锚固系统力学性能的试验研究[J]. 复合材料学报, 2022, 39(11): 5287-5299. doi: 10.13801/j.cnki.fhclxb.20220811.001
FANG Zhi, FENG Lixin, FANG Yawei, et al. Experimental study on mechanical properties of CFRP bar bond-type anchorage system under impact[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5287-5299. doi: 10.13801/j.cnki.fhclxb.20220811.001
Citation: FANG Zhi, FENG Lixin, FANG Yawei, et al. Experimental study on mechanical properties of CFRP bar bond-type anchorage system under impact[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5287-5299. doi: 10.13801/j.cnki.fhclxb.20220811.001

冲击作用下CFRP筋粘结式锚固系统力学性能的试验研究

doi: 10.13801/j.cnki.fhclxb.20220811.001
基金项目: 国家自然科学基金(52108210;51938012);湖南省科技创新计划(省优秀博士后创新人才计划)(2021 RC2062)
详细信息
    通讯作者:

    方志,博士,教授,研究方向为基于高性能材料工程结构的设计理论及工程应用技术 E-mail:fangzhi@hnu.edu.cn

  • 中图分类号: U444

Experimental study on mechanical properties of CFRP bar bond-type anchorage system under impact

  • 摘要: 为明确纵向冲击作用下碳纤维增强树脂复合材料(Carbon fiber-reinforced polymer,CFRP)筋粘结式锚固系统的力学性能,以锚固长度(50 mm、100 mm、150 mm、200 mm)为参数,对8组共计24个采用超高性能混凝土(Ultra-high performance concrete,UHPC)作为粘结介质的CFRP压纹筋及其粘结式锚具组装件进行了静力拉拔和纵向冲击试验。试验结果表明:较短锚固长度(50 mm、100 mm和150 mm)下,静力和冲击试件均发生CFRP筋拔出的滑移破坏,但静力作用下试件的滑移破坏由筋材表面肋的剪切破坏导致,而冲击作用下试件的滑移破坏是CFRP筋材整体滑出所致。当锚固长度提高至200 mm时,静力试件发生CFRP筋拉伸爆裂破坏,而冲击试件仍发生滑移破坏。随着锚固长度由50 mm提高至100 mm和150 mm,锚固系统的静态平均粘结强度分别提高27.1%和47.5%,动态平均粘结强度分别提高27.4%和37.8%;当锚固长度增大至200 mm时,试件的动态平均粘结强度较锚固长度为50 mm试件增大48.3%。相比于静力拉伸试件,冲击作用会显著降低锚固系统的粘结强度,在应变率为1.62~2.03 s−1时,动态平均粘结强度较相应的静态强度降低约53%。此外,建立了冲击作用下CFRP筋粘结式锚具动态平均粘结强度及临界锚固长度的实用计算公式。

     

  • 图  1  试件构造及尺寸

    UHPC—Ultra-high performance concrete; CFRP—Carbon fiber-reinforced polymer

    Figure  1.  Configurations and dimensions of specimens

    图  2  碳纤维增强树脂复合材料(CFRP)筋外观尺寸

    Figure  2.  Configurations of Carbon fiber-reinforced polymer (CFRP) bar

    图  3  静力试验装置

    LVDT—Linear variable displacement transducers

    Figure  3.  Setup of static tensile tests

    图  4  纵向冲击试验装置

    Figure  4.  Setup of longitudinal impact tests

    图  5  LVDT布置

    Figure  5.  Arrangement of LVDT

    图  6  CFRP筋粘结式锚固试件的破坏形态

    Figure  6.  Typical failure modes of test specimens of CFRP bar bond-type anchorage system

    图  7  CFRP筋粘结式锚固静力拉拔及冲击试件内部损伤状态

    Figure  7.  Damages on bond interface of static and impact test specimens of CFRP bar bond-type anchorage system

    图  8  CFRP筋粘结式锚固冲击试件索力时程曲线

    Figure  8.  Tension histories of impact test specimens of CFRP bar bond-type anchorage system

    图  9  CFRP筋粘结式锚固系统冲击试件滑移时程曲线

    Figure  9.  Slip histories of impact test specimens at CFRP bar bond-type anchorage

    图  10  CFRP筋粘结式锚固系统荷载-滑移曲线

    Figure  10.  Cable tension-slip relations of CFRP bar bond-type anchorage

    图  11  CFRP筋粘结式锚固系统抗拔刚度

    Figure  11.  Pull out stiffness of CFRP bar bond-type anchorage

    图  12  CFRP筋粘结式锚固系统粘结应力-滑移曲线

    Figure  12.  Bond stress-slip curves of CFRP bar bond-type anchorage

    图  13  锚固长度对CFRP筋粘结式锚固系统最大平均粘结应力的影响

    Figure  13.  Effect of embedded length on bond strength of CFRP bar bond-type anchorage

    图  14  锚固长度对CFRP筋粘结式锚固系统峰值荷载滑移量的影响

    Figure  14.  Effect of embedded length on slip at maximum tension of CFRP bar bond-type anchorage

    图  15  CFRP筋粘结式锚固系统静、动态峰值荷载滑移量对比

    Figure  15.  Comparisons between the static and impact slip at maximum tension of CFRP bar bond-type anchorage

    表  1  试件参数

    Table  1.   Parameters of the test specimens

    Specimen
    code
    Length of reliable anchorage/mmLength of experimental anchorage/mmFree length/
    mm
    Length of
    specimen/mm
    S-L50 500 50 300 890
    S-L100 500 100 300 940
    S-L150 500 150 300 990
    S-L200 500 200 300 1040
    D-L50 500 50 300 890
    D-L100 500 100 300 940
    D-L150 500 150 300 990
    D-L200 500 200 300 1040
    Notes: In specimen codes, the first nomenclature indicates the test type (S for static tensile test and D for dynamic impact test); and the second letter is used to differentiate the anchorage length (50 to 200 mm denoted by L50 to L200). For example, S-L50—Static specimen with a bond length of 50 mm for the experimental anchorage.
    下载: 导出CSV

    表  2  UHPC配合比

    Table  2.   Mix proportion of UHPC kg/m3

    CementSilica fumeQuartz flourQuartz sandWater reducerWater binder ratio
    10.250.251.10.020.22
    下载: 导出CSV

    表  3  CFRP筋粘结式锚固系统静力和冲击试验主要结果

    Table  3.   Typical results of CFRP bar bond-type anchorage system from the static and impact tests

    Specimen$ \dot \varepsilon $/s−1$ \bar{ \dot \varepsilon} $/s−1Tmax/kN$ {\bar T_{\max }} $/kN$ {\bar \tau _{{\rm{m}}} } $/MPaS0/mm$ {\bar S_{ 0}} $/mm
    S-L50-1 32.27 2.21
    S-L50-2 31.63 32.16 20.90 1.96 2.28
    S-L50-3 32.58 2.67
    S-L100-1 83.36 4.84
    S-L100-2 80.82 81.76 26.57 4.22 4.49
    S-L100-3 81.11 4.41
    S-L150-1 143.29 7.27
    S-L150-2 140.90 142.26 30.82 6.69 6.94
    S-L150-3 142.58 6.87
    S-L200-1 164.67 6.92
    S-L200-2 161.91 163.69 26.60 6.59 6.79
    S-L200-3 164.49 6.85
    D-L50-1 1.67 15.59 3.36
    D-L50-2 1.54 1.62 15.84 15.31 9.95 3.43 3.37
    D-L50-3 1.65 14.50 3.33
    D-L100-1 1.70 40.43 6.13
    D-L100-2 1.84 1.76 39.55 39.02 12.68 5.62 5.72
    D-L100-3 1.74 37.08 5.41
    D-L150-1 1.99 65.12 8.31
    D-L150-2 1.76 1.84 59.83 63.28 13.71 8.22 8.26
    D-L150-3 1.76 64.89 8.25
    D-L200-1 2.12 95.21 10.09
    D-L200-2 2.01 2.03 85.16 90.84 14.76 9.86 9.94
    D-L200-3 1.96 92.15 9.87
    Notes: $ \dot \varepsilon $, Tmax and S0—Strain rate, maximum tension force and slip of the loading end corresponding to Tmax,respectively; $ \bar{ \dot \varepsilon }$, $ {\bar T_{\max }} $, $ {\bar S_{ 0}} $ and $ {\bar \tau _{\rm{m}}} $—Average value of the strain rate, maximum tension force, slip of loading end corresponding to Tmax, and average bond strength, respectively.
    下载: 导出CSV

    表  4  CFRP筋粘结式锚固系统动、静态平均粘结强度对比

    Table  4.   Comparison between the static and dynamic average bond strength of CFRP bond-type anchorage

    Length of reliable anchorage/mmStatic bond stress τs,m/MPaDynamic bond stress τd,m/MPaτd,m/τs,m/%
    50 20.90 9.95 47.6
    100 26.57 12.68 47.7
    150 30.82 13.71 44.5
    下载: 导出CSV

    表  5  CFRP筋粘结式锚固系统静态粘结强度实测值与式(3)计算值比较

    Table  5.   Comparisons of the tested and predicted static bond strength of CFRP bond-type anchorage obtained by equation (3)

    Specimen codeTested results of τs,m/MPaCalculated results of τs,m from equation (3)/MPaDeviation/%
    (1)(2)$ \dfrac{{(2) - (1)}}{{(1)}} $
    S-L5020.9021.703.8
    S-L10026.5725.58−3.7
    S-L15030.8229.45−4.4
    下载: 导出CSV

    表  6  CFRP筋粘结式锚固系统动态粘结强度实测值与式(5)计算值比较

    Table  6.   Comparisons of the tested and predicted dynamic bond strength of CFRP bond-type anchorage obtained by equation (5)

    Specimen codeTested results of τd,m/MPaCalculated results of τd,m from equation (5)/MPaDeviation/%
    (1)(2)$ \dfrac{{(2) - (1)}}{{(1)}} $
    D-L509.9510.202.5
    D-L10012.6812.02−5.2
    D-L15013.7113.840.9
    D-L20014.7615.666.1
    下载: 导出CSV
  • [1] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):24-36(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [2] 冯鹏. 复合材料在土木工程中的发展与应用[J]. 复合材料科学与工程, 2014(9):99-104. doi: 10.3969/j.issn.1003-0999.2014.09.013

    FENG Peng. Development and application of composite in civil engineering[J]. Composites Science and Engineering,2014(9):99-104(in Chinese). doi: 10.3969/j.issn.1003-0999.2014.09.013
    [3] WANG X, WU Z. Evaluation of FRP and hybrid FRP cables for super long-span cable-stayed bridges[J]. Composite Structures,2010,92(10):2582-2590. doi: 10.1016/j.compstruct.2010.01.023
    [4] WU J, CHEN S R. Probabilistic dynamic behavior of a long-span bridge under extreme events[J]. Engineering Structures,2011,33(5):1657-1665. doi: 10.1016/j.engstruct.2011.02.002
    [5] 方亚威. 不同温度作用下碳纤维复合材料筋的静力和抗冲击性能研究[D]. 长沙: 湖南大学, 2020.

    FANG Yawei. Investigation on static and impact behavior of carbon fiber reinforced polymer bar with considering temperature effect[D]. Changsha: Hunan University, 2013(in Chinese).
    [6] PINCHEIRA J A, WOYAK J P. Anchorage of carbon fiber reinforced polymer (CFRP) tendons using cold-swaged sleeves[J]. PCI Journal,2001,46(6):100-111. doi: 10.15554/pcij.11012001.100.111
    [7] WANG L, ZHANG J, XU J, et al. Anchorage systems of CFRP cables in cable structures—A review[J]. Construction and Building Materials,2018,160:82-99. doi: 10.1016/j.conbuildmat.2017.10.134
    [8] 梅葵花, 吕志涛, 张继文. CFRP 筋黏结型锚具试验研究及实桥应用分析[J]. 中国公路学报, 2016, 29(1):53-60. doi: 10.3969/j.issn.1001-7372.2016.01.007

    MEI Kuihua, LV Zhitao, ZHANG Jiwen. Experimental study and practical application of bond-type anchorage for CFRP tendons[J]. China Journal of Highway and Transport,2016,29(1):53-60(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.01.007
    [9] 方志, 方川, 蒋正文, 等. 高温后CFRP筋及其黏结式锚固系统的力学性能[J]. 复合材料学报, 2021, 38(12): 4031-4041.

    FANG Zhi, FANG Chuan, JIANG Zhengwen, et al. Mecha-nical properties of CFRP bar and bond-type anchorage system after elevated temperature exposure[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4031-4041(in Chinese).
    [10] 方志, 梁栋, 蒋田勇. 不同黏结介质中 CFRP 筋锚固性能的试验研究[J]. 土木工程学报, 2006, 39(6):47-51. doi: 10.3321/j.issn:1000-131X.2006.06.008

    FANG Zhi, LIANG Dong, JIANG Tianyong. Experiment investigation on the anchorage performance of CFRP tendon in different bond mediums[J]. China Civil Engineering Journal,2006,39(6):47-51(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.06.008
    [11] 蒋田勇, 方志. CFRP筋黏结式锚具锚固性能试验[J]. 中国公路学报, 2004, 24(1):68-77.

    JIANG Tianyong, FANG Zhi. Experiment on anchorage performance of bond-type anchorage for CFRP tendon[J]. China Journal of Highway and Transport,2004,24(1):68-77(in Chinese).
    [12] 方志, 龚畅, 杨剑, 等. CFRP 预应力筋黏结式锚固系统的抗疲劳性能[J]. 公路交通科技, 2012, 29(7):58-63. doi: 10.3969/j.issn.1002-0268.2012.07.010

    FANG Zhi, GONG Chang, YANG Jian, et al. Fatigue behavior of bond-type anchorage with CFRP tendon[J]. Journal of Highway and Transportation Research and Development,2012,29(7):58-63(in Chinese). doi: 10.3969/j.issn.1002-0268.2012.07.010
    [13] 方志, 王常林, 张洪侨, 等. 碳纤维绞线在活性粉末混凝土中锚固性能的试验研究[J]. 中国公路学报, 2016, 29(6): 198-206.

    FANG Zhi, WANG Changlin, ZHANG Hongqiao, et al. Experimental study on anchoring performance of CFRP strand in reactive powder concrete[J]. China Journal of Highway and Transport, 2016, 29(6): 198-206(in Chinese).
    [14] ZHANG K Y, FANG Z, NANNI A, et al. Experimental study of a large scale ground anchor system with FRP tendon and UHPC grout medium[J]. Journal of Composites for Construction,2015,19(4):04014073.
    [15] 谢旭, 朱越峰, 申永刚. 大跨度钢索和 CFRP 索斜拉桥车桥耦合振动研究[J]. 工程力学, 2007 (z1): 53-61.

    XIE Xu, ZHU Yuefeng, SHEN Yonggang. Study on vibration of long-span cable-stayed bridge with steel and CFRP cables due to moving vehicles[J]. Engineering Mechanics, 2007(z1): 53-61(in Chinese).
    [16] 张羽, 方志, 卢江波, 等. 大跨混凝土斜拉桥施工过程中结构的断索动力响应[J]. 振动与冲击, 2021, 40(5): 237-246.

    ZHANG Yu, FANG Zhi, LU Jiangbo, et al. Broken cable-induced dynamic response of long-span concrete cable stayed bridge during construction[J]. Journal of Vibration and Shock, 2021, 40(5): 237-246(in Chinese).
    [17] KHALIL N, ASSAAD J J. Bond properties between smooth carbon fibre-reinforced polymer bars and ultra-high performance concrete modified with polymeric latexes and fibres[J]. European Journal of Environmental and Civil Engineering,2022, 26(13):6211-6228.
    [18] YOO D Y, YOON Y S. Bond behavior of GFRP and steel bars in ultra-high-performance fiber-reinforced concrete[J]. Advanced Composite Materials,2017,26(6):493-510. doi: 10.1080/09243046.2016.1197493
    [19] 李维博. 冲击荷载作用下CFRP筋—混凝土界面力学性能试验研究[D]. 长沙: 湖南大学, 2017.

    LI Weibo. Experiment study on dynamic bond behavior of CFRP rebar to concrete interface under impact loads[D]. Changsha: Hunan Universuty, 2017(in Chinese).
    [20] XIONG Z, WEI W, HE S, et al. Dynamic bond behaviour of fibre-wrapped basalt fibre-reinforced polymer bars embedded in sea sand and recycled aggregate concrete under high-strain rate pull-out tests[J]. Construction and Building Materials,2021,276:122195. doi: 10.1016/j.conbuildmat.2020.122195
    [21] 中国建筑材料联合会. 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022—2013[S]. 北京: 中国标准出版社, 2013.

    China Building Materials Federation. Test method for basic mechanical properties of fiber reinforced polymer bar: GB/T 30022—2013[S]. Beijing: China Standards Press, 2013(in Chinese).
    [22] 刘练. 不同应变率下混凝土动态力学性能试验研究[D]. 长沙: 湖南大学, 2017.

    LIU Lian. Experimental study on dynamic mechanical properties of concrete under different strain rates[D]. Changsha: Hunan University, 2017(in Chinese).
    [23] FANG Y, FANG Z, JIANG R, et al. Transverse static and low-velocity impact behavior of CFRP wires under pretension[J]. Journal of Composites for Construction,2019,23(5):04019041. doi: 10.1061/(ASCE)CC.1943-5614.0000970
    [24] 李正辉. 落石冲击下拱形明洞落石冲击荷载及荷载效应研究[D]. 成都: 西南交通大学, 2017.

    LI Zhenghui. Research on rock-fall impaction loads and loads effects of arch open tunnel under the impact of rock[D]. Chengdu: Southwest Jiaotong University, 2017(in Chinese).
    [25] 章豪. 落石撞击对钢混组合梁桥上部结构的动力响应分析[D]. 武汉: 武汉理工大学, 2020.

    ZHANG Hao. Dynamic response analysis of superstructure of stecl-concrete composite beam bridge in rockfalls impact[D]. Wuhan: Wuhan University of Technology, 2020(in Chinese).
    [26] 黄道斌. 碳纤维拉索的温度效应及车撞响应研究[D]. 长沙: 湖南大学, 2019.

    HUANG Daobin. Investigation on temperature effect and vehicle impact response of CFRP cables[D]. Changsha: Hunan University, 2019(in Chinese).
    [27] 张羽. 大跨混凝土斜拉桥断索后结构受力性能及倒塌破坏研究[D]. 长沙: 湖南大学, 2020.

    ZHANG Yu. Investigation on structural performance and progressive collapse of a1ong-span concrete cable-stayed bridge subjected to cable loss[D]. Changsha: Hunan University, 2020(in Chinese).
    [28] LI L, MAI G, HE S, et al. Experimental study on bond behaviour between recycled aggregate concrete and basalt fibre-reinforced polymer bars under different strain rates[J]. Construction and Building Materials,2021,290:123218. doi: 10.1016/j.conbuildmat.2021.123218
    [29] SHOKRIEH M M, OMIDI M J. Investigation of strain rateeffects on in-plane shear properties of glass/epoxy composites[J]. Composite Structures,2009,91(1):95-102. doi: 10.1016/j.compstruct.2009.04.035
    [30] 蒋田勇, 安磊. FRP筋混凝土界面疲劳黏结性能试验研究[J]. 公路交通科技, 2017, 34(3):70-79.

    JIANG Tianyong, AN Lei. Experiment study on fatigue bonding performence of interface between FRP tendons and concrete[J]. Journal of Highway and Transportation Research and Development,2017,34(3):70-79(in Chinese).
    [31] 郭书峰, 诸葛萍, 孙莉莉, 等. 碳纤维复合材料筋-环氧树脂胶界面传力机理研究[J]. 工业建筑, 2017, 47(4):111-115. doi: 10.13204/j.gyjz201704023

    GUO Shufeng, ZHUGE Ping, SUN Lili, et al. Research on load-transferring mechanism of the interface of CFRP tendon-epoxy resin[J]. Industrial Construction,2017,47(4):111-115(in Chinese). doi: 10.13204/j.gyjz201704023
    [32] BOUETTE B, CAZENEUVE C, OYTANA C. Effect of strain rate on interlaminar shear properties of carbon/epoxy composites[J].Composites Science and Technology, 1992, 45(4): 313-321.
    [33] BROWN K A, BROOKS R, WARRIOR N A. The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite[J]. Compo-sites Science and Technology,2010,70(2):272-283.
    [34] PAPADAKIS N, REYNOLDS N, PHARAOH M W, et al. Strain rate effects on the shear mechanical properties of a highly oriented thermoplastic composite material using a contacting displacement measurement methodology-Part A: Elasticity and shear strength[J]. Composites Science and Technology,2004,64(5):729-738. doi: 10.1016/j.compscitech.2003.08.001
    [35] 蒋田勇, 方志. 极限状态时CFRP筋黏结式锚具黏结应力分布[J]. 公路交通科技, 2007(12): 75-78, 92.

    JIANG Tianyong, FANG Zhi. Bond stress distribution of bond-type anchors of CFRP tendons under the ultimate tensile capacity[J]. Journal of Highway and Transportation Research and Development, 2007(12): 75-78, 92(in Chinese).
    [36] HARDING J, WELSH L M. A tensile testing technique for fibre-reinforced composites at impact rates of strain[J]. Journal of Materials Science, 1983, 18(6): 1810-1826.
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  676
  • HTML全文浏览量:  330
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-08-08
  • 录用日期:  2022-08-12
  • 网络出版日期:  2022-08-12
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回