留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维针刺复合材料参数化建模及力学性能仿真

陈国耀 黄丰 杨振宇 卢子兴 王浩然

陈国耀, 黄丰, 杨振宇, 等. 三维针刺复合材料参数化建模及力学性能仿真[J]. 复合材料学报, 2022, 39(9): 4459-4470. doi: 10.13801/j.cnki.fhclxb.20220725.002
引用本文: 陈国耀, 黄丰, 杨振宇, 等. 三维针刺复合材料参数化建模及力学性能仿真[J]. 复合材料学报, 2022, 39(9): 4459-4470. doi: 10.13801/j.cnki.fhclxb.20220725.002
CHEN Guoyao, HUANG Feng, YANG Zhenyu, et al. Parametric modeling and mechanical properties simulation of three-dimensional needling composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4459-4470. doi: 10.13801/j.cnki.fhclxb.20220725.002
Citation: CHEN Guoyao, HUANG Feng, YANG Zhenyu, et al. Parametric modeling and mechanical properties simulation of three-dimensional needling composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4459-4470. doi: 10.13801/j.cnki.fhclxb.20220725.002

三维针刺复合材料参数化建模及力学性能仿真

doi: 10.13801/j.cnki.fhclxb.20220725.002
基金项目: 国家自然科学基金(11972057;11972058);国家科技重大专项(2017-VII-0003-0096)
详细信息
    通讯作者:

    杨振宇,博士,副教授,博士生导师,研究方向为复合材料力学 E-mail: zyyang@buaa.edu.cn

  • 中图分类号: TB330.1

Parametric modeling and mechanical properties simulation of three-dimensional needling composites

Funds: National Natural Science Foundation (11972057; 11972058); National Science and Technology Major Project(2017-VII-0003-0096)
  • 摘要: 提出了一套三维针刺复合材料建模方法,并应用于针刺碳/酚醛复合材料的力学性能仿真分析。首先基于虚拟纤维技术,采用商用有限元软件ABAQUS,实现了叠层材料针刺工艺过程的数值模拟,获得了针刺区域附近的纤维丝在针刺过程中的变形规律,据此建立了受针刺影响区域内的纤维取向、损伤百分比与针刺工艺参数之间的关系;将这一关系引入到针刺复合材料代表性体积单元(RVE)模型中,较准确地体现真实材料中针刺区结构特征。利用此模型对材料的弹性性能、强度进行预测,结果与实验值吻合良好,验证了模型的有效性;在此基础上,进一步讨论了针刺密度、针刺深度等参数对复合材料力学性能的影响规律。本文的研究结果对针刺复合材料的力学分析与优化设计具有一定的指导意义。

     

  • 图  1  三维针刺碳/酚醛复合材料的铺层材料及针刺过程:(a) 缎纹布与网胎铺层;(b) 针刺板结构

    Figure  1.  Schematic of plies and needling process of 3D needled carbon/phenolic composites: (a) Satin and net layer plies; (b) Structure of needle plate

    图  2  针刺碳/酚醛复合材料微观形貌(橘红色实线为针刺位置,黑色虚线为变形区,红色虚线为碳布)

    Figure  2.  Microstructure of needled carbon/phenolic composites (Orange lines for the needling region, black dashed lines for the deformed region, and yellow dashed lines for the carbon cloth)

    图  3  单轴拉伸试件

    Figure  3.  Specimen for uniaxial tensile test

    图  4  随机纤维的空间位置关系定义

    Figure  4.  Definition of spatial position of two random fibers

    图  5  网胎层的随机纤维网络模型

    Figure  5.  Random fibers network model of the net layer

    图  6  网胎层针刺模拟中针刺深度为5 mm时模拟结果

    Figure  6.  Net layer needling simulation results with needling depth of 5 mm

    图  7  网胎层针刺模拟中不同针刺深度下位移随针刺中心距离的关系

    Figure  7.  Relationship between the displacement and the distance to needling center at different needling depth of net layer needling simulation

    图  8  缎纹布的虚拟纤维模型

    Figure  8.  Virtual fiber model of satin fabric

    a—Length of major axis of the yarn’s cross section; b—Length of minor axis of the yarn’s cross section; l—Spacing between the adjacent yarns

    图  9  碳布层针刺模拟的典型针刺位置

    Figure  9.  Typical needling positions on the satin plies for simualtions

    图  10  碳布层针刺模拟过程中:(a) 刺针上的载荷与刺入深度的关系;(b) 针刺过程中纤维断裂

    Figure  10.  Satin fabric needling simulation: (a) Relationship between the reaction force on the needle and the penetration depth; (b) Fiber breakage in the needling process

    图  11  三维针刺碳/酚醛复合材料的第一层表面针迹

    Figure  11.  Needling trail in first ply of 3D needled carbon/phenolic composites

    图  12  三维针刺碳/酚醛复合材料的体素化针刺代表性体积单元(RVE)及单元位置关系

    Figure  12.  3D needled carbon/phenolic composites' Voxelized needling representative volume element (RVE) and location of elements

    图  13  体素化针刺单元(VNC)模型中处于Case 3范围内的单元及材料方向

    Figure  13.  Elements located in Case 3 and its local material direction in the voxelized needling cell (VNC) model composites

    图  14  三维针刺碳/酚醛复合材料的体素化针刺RVE模型

    Figure  14.  Voxelized needling RVE model of 3D needled carbon/phenolic composites

    图  15  三维针刺碳/酚醛复合材料单轴拉伸的数值模拟结果和试验结果的对比

    Figure  15.  Comparison between numerical simulation and test results of 3D needled carbon/phenolic composites' uniaxial tension

    图  16  三维针刺碳/酚醛复合材料单轴拉伸的弹性阶段应力云图

    Figure  16.  Stress contour plot in elastic deformation of 3D needled carbon/phenolic composites' uniaxial tension

    图  17  拉伸应变$ {\varepsilon _x} $=0.11%时网胎层损伤情况

    Figure  17.  Damage of net layer at tensile strain ${\varepsilon _x}$=0.11%

    图  18  拉伸应变${\varepsilon _x}$=0.24%时针刺纤维束 (a) 及缎布 (b) 损伤情况

    Figure  18.  Damage of needled fiber bundles (a) and satin plies (b) at tensile strain ${\varepsilon _x}$=0.24%

    图  19  三维针刺碳/酚醛复合材料的VNC模拟结果与文献结果对比

    Figure  19.  Comparison of VNC simulation with the results from previous references of 3D needled carbon/phenolic composites

    图  20  三维针刺碳/酚醛复合材料的归一化弹性性能随针刺深度的变化曲线

    Figure  20.  Relationship between the normalized elastic properties and the needling depth of 3D needled carbon/phenolic composites

    图  21  三维针刺碳/酚醛复合材料的弹性性能随针刺密度的变化曲线

    Figure  21.  Relationship between the normalized elastic properties and the needling density of 3D needled carbon/phenolic composites

    图  22  不同针刺深度下三维针刺碳/酚醛复合材料的单轴拉伸的应力-应变曲线

    Figure  22.  Stress-strain curves of uniaxial tension under different needling depth of 3D needled carbon/phenolic composites

    图  23  不同针刺密度下三维针刺碳/酚醛复合材料的单轴拉伸的应力-应变曲线

    Figure  23.  Stress-strain curves of uniaxial tension under different needling density of 3D needled carbon/phenolic composites

    表  1  碳布层不同针刺深度下纤维断裂百分比

    Table  1.   Percentage of fiber breakage with different needling depth of satin fabric layer

    Hd/mm468
    Case 10.00%0.00%0.22%
    Case 21.10%2.87%4.08%
    Case 32.65%5.74%11.37%
    下载: 导出CSV

    表  2  纤维和基体的力学性能参数

    Table  2.   Mechanical properties of fiber and matrix

    Material${E_{11}}$/GPa${E_{22}}$/GPa${G_{12}}$/GPa${G_{23}}$/GPa${\nu _{12}}$${\nu _{23}}$
    T800[22]Fiber195.008.584.602.90.330.48
    Phenolic resin[23]Matrix4.101.520.35
    Notes: ${E_{11}}$, ${E_{22}}$—Young’s modulus; ${G_{12}}$, ${G_{23}}$—Shear modulus; ${v_{12}}$, ${v_{23}}$—Poisson’s ratio.
    下载: 导出CSV

    表  3  不同针刺深度下缎纹布弹性性能

    Table  3.   Elastic properties of satin fabric at different needling depths

    ${H_{\text{d}}}$/mm${E_{11}}$/GPa${E_{33}}$/GPa${G_{12}}$/GPa${G_{13}}$/GPa${\nu _{12}}$${\nu _{23}}$
    034.076.972.402.170.1030.100
    433.836.962.402.160.1000.100
    632.526.872.352.140.1030.103
    830.996.752.302.110.1030.105
    Notes: E33—Young’s modulus; G13—Shear modulus.
    下载: 导出CSV

    表  4  三维针刺碳/酚醛复合材料不同铺层的布针形式

    Table  4.   Needling form in different plies of 3D needled carbon/phenolic composites

    Needling stepFirst plySecond plyThird ply
    First needling along X direction(0, 0)(0, 5)(0, 10)
    First needling along Y direction(0, 3)(5, 3)(10, 3)
    Second needling along X direction(0, 2.5)(0, 7.5)(0, 12.5)
    Second needling along Y direction(2.5, 3)(7.5, 3)(12.5, 3)
    下载: 导出CSV

    表  5  石墨基体力学性能[14]

    Table  5.   Mechanical properties of graphite matrix[14]

    ${E_{\text{m}}}$/GPa${v_{\text{m}}}$$R_{\text{m}}^{\text{t}}$/MPa$R_{\text{m}}^{\text{c}}$/MPa$R_{\text{m}}^{\text{s}}$/MPa
    9.2350.2314.767.819.1
    Notes: $ {E}_{\mathrm{m}},{\nu }_{\mathrm{m}} $—Young’s modulus and Poisson's ratio; $ {R}_{\mathrm{m}}^{\mathrm{t}},\;{R}_{\mathrm{m}}^{\mathrm{c}},\;{R}_{\mathrm{m}}^{\mathrm{s}} $—Tensile strength, compressive strength and shear strength, respectively.
    下载: 导出CSV

    表  6  三维针刺碳/酚醛复合材料弹性性能计算结果对比

    Table  6.   Comparison of the elastic properties of 3D needled carbon/phenolic composites

    ${E_{11}}$/GPa${G_{12}}$/GPa${v_{12}}$
    VNC47.4212.480.12
    FEM[24]57.3514.690.12
    Experiment[24]50.1712.990.12
    Notes: VNC—Voxelized needling cell; FEM—Finite element method.
    下载: 导出CSV
  • [1] OLRY P. Process and apparatus for manufacturing axi-symmetrical three-dimensional structures: US, 4621662[P]. 1986-11-11.
    [2] BOURY D, CROS C, PIN B. From P80 nozzle demonstration to A5 SRM nozzle evolution[C]// 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati: AIAA, 2007: 5811.
    [3] CHEN X, CHEN L, ZHANG C, et al. Three-dimensional needle-punching for composites—A review[J]. Composites Part A: Applied Science and Manufacturing,2016,85:12-30.
    [4] GAO Z, CHEN L. A review of multi-scale numerical modeling of three-dimensional woven fabric[J]. Composite Structures,2021,263(3):113685.
    [5] KIM J, SHIOYA M, KOBAYASHI H, et al. Mechanical pro-perties of woven laminates and felt composites using carbon fibers. Part 1: In-plane properties[J]. Composites Science and Technology,2004,64(13-14):2221-2229. doi: 10.1016/j.compscitech.2004.03.012
    [6] 张晓虎, 李贺军, 郝志彪, 等. 针刺工艺参数对炭布网胎增强C/C材料力学性能的影响[J]. 无机材料学报, 2007, 22(5):963-967. doi: 10.3321/j.issn:1000-324x.2007.05.037

    ZHANG Xiaohu, LI Hejun, HAO Zhibiao, et al. Influence of needle-punching processing parameters on mechanical properties of C/C composites reinforced by carbon cloth and carbon fiber net[J]. Journal of Inorganic Materials,2007,22(5):963-967(in Chinese). doi: 10.3321/j.issn:1000-324x.2007.05.037
    [7] CHEN Z, FANG G, XIE J, et al. Experimental study of high-temperature tensile mechanical properties of 3D needled C/C-SiC composites[J]. Materials Science and Engineering: A,2016,654:271-277. doi: 10.1016/j.msea.2015.12.010
    [8] 戚云超, 方国东, 梁军, 等. 三维针刺C/C-SiC复合材料预制体工艺参数优化[J]. 材料工程, 2020, 48(1):27-33. doi: 10.11868/j.issn.1001-4381.2019.000041

    QI Yunchao, FANG Guodong, LIANG Jun, et al. Optimization of process parameters of three-dimensional needling C/C-SiC composite preform[J]. Journal of Materials Engi-neering,2020,48(1):27-33(in Chinese). doi: 10.11868/j.issn.1001-4381.2019.000041
    [9] 史剑. 针刺陶瓷基复合材料应力应变响应模拟及验证[D]. 南京: 南京航空航天大学, 2012.

    SHI Jian. Simulation and verification of stress and strain response of needling ceramic matrix composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
    [10] JI A, HONG C, LI H, et al. Performance analysis of a carbon cloth/felt layer needled preform[J]. New Carbon Materials, 2011, 26(2): 109-116.
    [11] 李龙, 高希光, 史剑, 等. 考虑孔隙的针刺C/SiC复合材料弹性参数计算[J]. 航空动力学报, 2013, 28(6):1257-1263. doi: 10.13224/j.cnki.jasp.2013.06.021

    LI Long, GAO Xiguang, SHI Jian, et al. Calculation of elas-tic parameters of needled C/SiC composites considering porosity[J]. Journal of Aerospace Power,2013,28(6):1257-1263(in Chinese). doi: 10.13224/j.cnki.jasp.2013.06.021
    [12] XIE J, LIANG J, FANG G, et al. Effect of needling parameters on the effective properties of 3D needled C/C-SiC composites[J]. Composites Science and Technology, 2015, 117: 69-77.
    [13] HAN M, ZHOU C, ZHANG H. A mesoscale beam-spring combined mechanical model of needle-punched carbon/carbon composite[J]. Composites Science and Technology,2018,168(10):371-380.
    [14] YU J, ZHOU C, ZHANG H. A micro-image based reconstructed finite element model of needle-punched C/C compo-site[J]. Composites Science and Technology,2017,153:48-61. doi: 10.1016/j.compscitech.2017.09.029
    [15] ZHOU G, SUN X, WANG Y. Multi-chain digital element analysis in textile mechanics[J]. Composites Science & Technology,2004,64(2):239-244.
    [16] LIU C, XIE J, SUN Y, et al. Micro-scale modeling of textile composites based on the virtual fiber embedded models[J]. Composite Structures, 2019, 230: 111552.
    [17] YANG Z, JIAO Y, XIE J, et al. Modeling of 3D woven fibre structures by numerical simulation of the weaving process[J]. Composites Science and Technology,2021,206(8):108679.
    [18] XIE J, CHEN X, ZHANG Y, et al. Experimental and numeri-cal investigation of the needling process for quartz fibers[J]. Composites Science and Technology,2018,165:115-123. doi: 10.1016/j.compscitech.2018.06.009
    [19] 全国纤维增强塑料标准化技术委员. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国质检出版社, 2005.

    National Technical Committee of Standardization on Fiber Reinforced Plastics. Test method for tensile properties of fiber reinforced plastics: GB/T 1447—2005[S]. Beijing: China Quality Inspection Press, 2005(in Chinese).
    [20] ZHANG Y, LU Z, YANG Z, et al. Compression behaviors of carbon-bonded carbon fiber composites: Experimental and numerical investigations[J]. Carbon,2017,116:398-408. doi: 10.1016/j.carbon.2017.02.012
    [21] ZHANG Y, LU Z, YANG Z, et al. Fracture behavior of fibrous network materials: Crack insensitivity and toughening mechanism[J]. International Journal of Mechanical Sciences,2020,188:105910. doi: 10.1016/j.ijmecsci.2020.105910
    [22] 何柏灵, 葛东云, 莫与明, 等. T800碳纤维增强复合材料双剪单钉连接的拉伸试验及强度估算[J]. 复合材料学报, 2016, 33(7):1540-1552. doi: 10.13801/j.cnki.fhclxb.20151020.002

    HE Bailing, GE Dongyun, MO Yuming, et al. Tensile test and strength estimation of T800 carbon fiber reinforced composite with double shear and single screw connection[J]. Acta Materiae Compositae Sinica,2016,33(7):1540-1552(in Chinese). doi: 10.13801/j.cnki.fhclxb.20151020.002
    [23] 梁军, 杜善义. 防热复合材料高温力学性能[J]. 复合材料学报, 2004, 21(1):73-77. doi: 10.3321/j.issn:1000-3851.2004.01.014

    LIANG Jun, DU Shanyi. High temperature mechanical properties of heat-resistant composites[J]. Acta Materiae Compositae Sinica,2004,21(1):73-77(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.01.014
    [24] 谢军波. 针刺预制体工艺参数建模及复合材料本构关系研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    XIE Junbo. Study on process parameter modeling of needling preform and constitutive relation of composite material[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
  • 加载中
图(23) / 表(6)
计量
  • 文章访问数:  1237
  • HTML全文浏览量:  372
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 修回日期:  2022-07-14
  • 录用日期:  2022-07-14
  • 网络出版日期:  2022-07-25
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回