Application and development of composite materials in large-scale wind turbine blade
-
摘要: “30.60”双碳目标的提出,风电行业迎来新的发展机遇。随着中国风电进入平价时代,风电机组通过不断增加单机容量来降低度电成本,由此也对风电叶片长度提出了不断增加的要求。风电叶片面临着“大型化、轻量化与低成本”的矛盾,新材料和新工艺是推动叶片走向风电平价时代的重要手段。本文评述了风电叶片行业的发展与趋势,指出影响叶片性能和成本的关键原材料,系统性地分析了增强纤维、夹芯材料、基体树脂和结构胶4种材料在叶片上的应用现状和发展趋势;探讨了高质量和绿色环保条件下叶片大型化对工艺发展的新要求,新工艺中的预浸料和拉挤技术是未来大叶片应用发展的主要趋势。最后,文章对新材料和新工艺在叶片上的创新应用提出了一些思考与建议,为平价时代风电叶片的大型化发展提供了重要参考。Abstract: With the proposal of "30.60" Double Carbon Project, the wind power industry has ushered in new development opportunities. As China's wind power enters the era of parity, the cost of power per kWh is reduced with the continuous increase of the single capacity of wind turbine system, which also leads to significant increase in the wind blade length. Wind blade is now facing the contradictive requirements of "large-scale, low-cost and lightweight". Both new material and innovative processing technology are of great importance to promote wind power to the parity era. On one hand, several key raw materials, including reinforcing fiber, matrix resin, core and structural adhesive, that affect the performance and cost of wind blade are systematically examined. On the other hand, high quality blades and green environmental protection are of great concern for the wind power industry, which indicates that new processing technology such as prepreg and pultrusion are playing more and more important role in future large scale blade manufacture. Thereafter, with systematic consideration of the materials and processing technologies in the development of wind blade, some suggestions are proposed on the introduction of these materials and technologies, in order to provide some reference for future large-scale wind blade development.
-
Key words:
- composite material /
- wind turbine blade /
- large-scale /
- core material /
- carbon fiber
-
表 1 叶片用玻璃纤维的主要型号
Table 1. Main types of glass fiber for wind blade
Manufacturer First generation Second generation Third generation Fourth generation Jushi E6 E7 E8 E9 CPIC TM TM+ TMII — CTG TCR HMG S-1 HM THM-1 OCV WS2000 WS3000 WS4000 — 表 2 叶片用碳纤维的主要型号
Table 2. Main type of carbon fiber used for blades
Manufacturer TORAY ZOLTEK SGL Formosa ZFSY Type T720 PX35 CT50 TC35 SY45 Tows/K 36 50 50 48 24 Modulus/GPa 265 242 260 240 230 -
[1] MORTEN D, BEN B. Global wind report 2022[R]. Brussels: Global Wind Energy Council, 2021: 110-140. [2] ALASTAIR D, MARC B. Global offshore wind report 2021[R]. Brussels: Global Wind Energy Council, 2021: 19-30. [3] WOOD M. Global wind power market outlook update: Q1 2022[R]. Global conclusions on Q1 forecast, 2022: 7-8. [4] REDDY S S P, SURESH R, HANAMANTRAYGPINDA M B, et al. Use of composite materials and hybrid composites in wind turbine blades[J]. Materials Today: Proceedings,2021,46:2827-2830. doi: 10.1016/j.matpr.2021.02.745 [5] AUBRYN C, ANNIKA E, ERIC L. Wind turbine blade material in the United States: Quantities, costs, and end-of-life options[J]. Resources, Conservation & Recycling, 2021, 168: 105439. [6] COGNE V, PONT S, DOBREV I, et al. Bioinspired turbine blades offer new perspectives for wind energy[J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,2017,473(2198):20160726.S. doi: 10.1098/rspa.2016.0726 [7] MURRAY R E, SCOTT J, DAVID S, et al. Techno-economic analysis of a megawatt-scale thermoplastic resin wind tubine blade[J]. Renewable Energy, 2019, 131: 111-119. [8] BATURKIN D, AHMAT H O, MASMOUDI R, et al.Valorization of recycled FRP materials from wind turbine blades in concrete[J]. Resources, Conservation & Recycling, 2021, 174: 105807. [9] GABHALE R R, CHANDRA B D. Comprehensive study of composite materials used in wind turbine blade[J]. International Journal of Latest Trends in Engineering and Technology,2015,6(2):146-155. [10] PINTO T H L, GUL W, TORRES L A G, et al. Experimental and numerical comparison of impact behavior between thermoplastic and thermoset composite for wind turbine blades[J]. Materials, 2021, 14: 6377. [11] MURRAY R E, SWAN D, SNOWBERG D, et al. , Manufacturing a 9-meter thermoplastic composite wind turbine blade[C]. ASC 32nd Technical Conference. West Lafayette: Purdue University, 2017. [12] PETTERSSON J. Analysis and design of an adhesive joint in wind turbine blades[D]. Sweden: Lund University, 2016. [13] ZHOU H F, DOU H Y, QIN L Z, et al. A review of full scale structural testing of wind turbine blades[J]. Renewable & Sustainable Energy Reviews,2014,33(2):177-187. [14] 李林致. 刍议风力发电的发展现状及趋势[J]. 中国新通信, 2018, 20(19):203-204. doi: 10.3969/j.issn.1673-4866.2018.19.180LI Linzhi. Discussion on the development status and trend of wind power generation[J]. China New Communications,2018,20(19):203-204(in Chinese). doi: 10.3969/j.issn.1673-4866.2018.19.180 [15] 张文毓. 风电叶片复合材料及其应用[J]. 上海电气技术, 2017, 10(4):55-57. doi: 10.3969/j.issn.1674-540X.2017.04.014ZHANG Wenyu. Wind power blade composite material and its application[J]. Shanghai Electric Technology,2017,10(4):55-57(in Chinese). doi: 10.3969/j.issn.1674-540X.2017.04.014 [16] 林刚. 2020全球碳纤维复合材料市场报告[Z]. 2020: 25-26.LIN Gang. 2020 Global carbon fiber composites market report[Z]. 2020: 25-26(in Chinese). [17] CRISTIAN L T, EDGAR E M, RODOLFO R B. Effects of the vacuum moulding process on the mechanical properties of cotton/epoxy composite[J]. Fibres and Textile in Eastern Europe,2018,26(3):93-97. [18] JOAQUIM V, CARLOS G, JAVIER L. Fabric compaction and infiltration during vacuum-assisted resin infusion with and without distribution medium[J]. Journal of Composite Materials,2017,51(5):687-703. doi: 10.1177/0021998316649783 [19] MOHANT P, KANNY K. Mechanical properties and failure analysis of short kenaf fibre reinforced composites processed by resin casting and vacuum infusion methods[J]. Polymers and Polymer Composites,2018,26(2):189-204. doi: 10.1177/096739111802600207 [20] 徐立波. VARI工艺影响因素简析[J]. 轻工科技, 2015, 31(6):28-29.XU Libo. Brief analysis of the factors affecting VARI process[J]. Light Industry Technology,2015,31(6):28-29(in Chinese). [21] 潘利剑, 刘卫平, 陈萍, 等. 真空辅助成型工艺中预成型体的厚度变化与过流控制[J]. 复合材料学报, 2012, 29(5):244-248. doi: 10.13801/j.cnki.fhclxb.2012.05.011PAN Lijian, LIU Weiping, CHEN Ping, et al. Thickness variation and overcurrent control of preforms in vacuum assisted forming process[J]. Acta Materiae Compositae Sinica,2012,29(5):244-248(in Chinese). doi: 10.13801/j.cnki.fhclxb.2012.05.011 [22] COUSINS D S, SUZUKI Y, MURRAY R E, et al. Recycling glass fiber thermoplastic composites from wind turbine blades[J]. Journal of Cleaner Production, 2019, 209: 1252-1263. [23] 李书乡, 马全胜, 张顺. 中国高性能碳纤维产业的创新发展[J]. 科技导报, 2018, 36(19):73-80.LI Shuxiang, MA Quansheng, ZHANG Shun. Development of high performance carbon fiber industry in China[J]. Science & Technology Review,2018,36(19):73-80(in Chinese). [24] 阮芳涛, 施建, 徐珍珍, 等. 碳纤维增强树脂基复合材料的回收及其再利用研究进展[J]. 纺织学报, 2019, 40(6):152-157. doi: 10.13475/j.fzxb.20180802906RUAN Fangtao, SHI Jian, XU Zhenzhen, et al. Research progress in recycling and reuse of carbon fiber reinforced resin composites[J]. Journal of Textile Research,2019,40(6):152-157(in Chinese). doi: 10.13475/j.fzxb.20180802906 [25] ALEXANDER S, NATALIE R, LMAN T. Co-curing of CFRP-steel hybrid joints using the vacuum assisted resin infusion process[J]. Applied Composite Materials,2017,24(5):1137-1149. doi: 10.1007/s10443-016-9575-3 [26] BUCUR I O, MALAEL I, BREBAN S. Horizontal-axis wind turbine blades manufacture with composite materials[C]//IOP Conference Series: Materials Science and Engineering. Iasi, 2020. [27] FRACASSIF T, DONADON M V. Simulation of vauum assisted resin transfer moling prcess through dynamics ystemanalysis[J]. Journal of Composite Materials,2018,52(27):3759-3771. doi: 10.1177/0021998318770000 [28] 邢丽英, 蒋诗才, 周正刚. 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013, 30(2):1-9.XING Liying, JIANG Shicai, ZHOU Zhenggang. Progress of manufacturing technology development of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2013,30(2):1-9(in Chinese). [29] 罗益锋, 罗晰旻. 近期碳纤维及其复合材料的新发展[J]. 高科技纤维与应用, 2014, 39(1):1-9. doi: 10.3969/j.issn.1007-9815.2014.01.001LUO Yifeng, LUO Ximin. New developments of recent carbon fiber and their composite materials[J]. Hi-Tech Fiber & Application,2014,39(1):1-9(in Chinese). doi: 10.3969/j.issn.1007-9815.2014.01.001 [30] 高奇. 新形势下我国碳纤维产业发展探讨[J]. 合成纤维工业, 2019, 42(4):58-63.GAO Qi. Discussion on development of China carbon fiber industry under new situation[J]. China Synthetic Fiber Industry,2019,42(4):58-63(in Chinese).