留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料在大型风电叶片上的应用与发展

李成良 杨超 倪爱清 王继辉 宋秋香

李成良, 杨超, 倪爱清, 等. 复合材料在大型风电叶片上的应用与发展[J]. 复合材料学报, 2023, 40(3): 1274-1284. doi: 10.13801/j.cnki.fhclxb.20220715.001
引用本文: 李成良, 杨超, 倪爱清, 等. 复合材料在大型风电叶片上的应用与发展[J]. 复合材料学报, 2023, 40(3): 1274-1284. doi: 10.13801/j.cnki.fhclxb.20220715.001
LI Chengliang, YANG Chao, NI Aiqing, et al. Application and development of composite materials in large-scale wind turbine blade[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1274-1284. doi: 10.13801/j.cnki.fhclxb.20220715.001
Citation: LI Chengliang, YANG Chao, NI Aiqing, et al. Application and development of composite materials in large-scale wind turbine blade[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1274-1284. doi: 10.13801/j.cnki.fhclxb.20220715.001

复合材料在大型风电叶片上的应用与发展

doi: 10.13801/j.cnki.fhclxb.20220715.001
基金项目: 江苏省碳达峰碳中和科技创新专项(SBE2021080010);中国建材集团关键核心技术攻关项目(2021 HX1617)Carbon Peak Carbon Neutralization Scientific Innovation Special Project of Jiangsu Province (SBE2021080010); Key Technological Tackling Project of China National Building Material Group CO., LTD. (2021HX1617)
详细信息
    通讯作者:

    王继辉,博士,教授,博士生导师,研究方向为聚合物基复合材料 E-mail: jhwang@whut.edu.cn

  • 中图分类号: TB332

Application and development of composite materials in large-scale wind turbine blade

  • 摘要: “30.60”双碳目标的提出,风电行业迎来新的发展机遇。随着中国风电进入平价时代,风电机组通过不断增加单机容量来降低度电成本,由此也对风电叶片长度提出了不断增加的要求。风电叶片面临着“大型化、轻量化与低成本”的矛盾,新材料和新工艺是推动叶片走向风电平价时代的重要手段。本文评述了风电叶片行业的发展与趋势,指出影响叶片性能和成本的关键原材料,系统性地分析了增强纤维、夹芯材料、基体树脂和结构胶4种材料在叶片上的应用现状和发展趋势;探讨了高质量和绿色环保条件下叶片大型化对工艺发展的新要求,新工艺中的预浸料和拉挤技术是未来大叶片应用发展的主要趋势。最后,文章对新材料和新工艺在叶片上的创新应用提出了一些思考与建议,为平价时代风电叶片的大型化发展提供了重要参考。

     

  • 图  1  2021年全球风电新增装机容量[1]

    Figure  1.  Global wind power capacity growth in 2021[1]

    CAGR—Compound annual growth rate

    图  2  2021~2026年全球新增风电预测[1]

    Figure  2.  Global wind power market forecast, 2021-2026[1]

    e—Annual growth rate

    图  3  2021~2031年全球新增风电预测[3]

    Figure  3.  Global wind power market forcast, 2021-2031[3]

    AAGR—Average annual growth rate

    图  4  风电机组单机功率大型化趋势[2]

    Figure  4.  Trend of large-scale wind turbine unit power[2]

    图  5  典型风电叶片截面结构型式

    Figure  5.  Typical structure of wind turbine blade section

    TEUD—Trailing edge spar cap; LE—Leading edge

    图  6  叶片成本占比情况

    Figure  6.  Cost ratio of wind blade

    图  7  叶片主要材料成本占比

    Figure  7.  Main materials cost ratio of wind blade

    图  8  主要型号玻璃纤维的拉伸模量

    Figure  8.  Tensile modulus of main types of glass fibers

    图  9  风电行业碳纤维需求趋势[16]

    Figure  9.  Carbon fiber demand trend in wind industry [16]

    图  10  轻木的加工与应用

    Figure  10.  Processing and application of balsa wood

    图  11  风电叶片芯材的主流产品

    Figure  11.  Mail core materials of wind blade

    PVC—Polyvinyl chloride; PET—Polyethylene terephthalate; HPE—High performance polyurethane

    图  12  HPE和PET的SEM图像

    Figure  12.  SEM images of HPE and PET structure

    图  13  73 m叶片腹板 (a) 和蒙皮 (b) 不同芯材吸胶量与质量变化

    Figure  13.  Variation of resin absorption and weight of different core materials of 73 m blade shear-web (a) and blade skin (b)

    图  14  73 m叶片应用HPE后综合成本的变化

    Figure  14.  Changes in comprehensive cost of 73 m blade after HPE application

    图  15  拉剪强度和剥离强度随胶层厚度变化

    Figure  15.  Tensile shear strength and peel strength versus adhesive thickness

    图  16  玻璃化转变温度Tg随固化时间的变化

    Figure  16.  Change of glass transition temperature Tg with curing time

    图  17  剪切强度随Tg的变化

    Figure  17.  Change of shear strength with Tg

    图  18  预浸料真空袋压工艺

    Figure  18.  Vacuum bag process of prepreg

    图  19  拉挤与灌注工艺复合材料力学性能的对比

    Figure  19.  Comparison of mechanical properties of composite by pultrusion and infusion

    图  20  碳纤维板材与拉挤主梁叶片

    Figure  20.  Carbon fiber plate pultrusion spar cap blade

    表  1  叶片用玻璃纤维的主要型号

    Table  1.   Main types of glass fiber for wind blade

    ManufacturerFirst generationSecond generationThird generationFourth generation
    JushiE6E7E8E9
    CPICTMTM+TMII
    CTGTCRHMGS-1 HMTHM-1
    OCVWS2000WS3000WS4000
    下载: 导出CSV

    表  2  叶片用碳纤维的主要型号

    Table  2.   Main type of carbon fiber used for blades

    ManufacturerTORAYZOLTEKSGLFormosaZFSY
    TypeT720PX35CT50TC35SY45
    Tows/K3650504824
    Modulus/GPa265242260240230
    下载: 导出CSV
  • [1] MORTEN D, BEN B. Global wind report 2022[R]. Brussels: Global Wind Energy Council, 2021: 110-140.
    [2] ALASTAIR D, MARC B. Global offshore wind report 2021[R]. Brussels: Global Wind Energy Council, 2021: 19-30.
    [3] WOOD M. Global wind power market outlook update: Q1 2022[R]. Global conclusions on Q1 forecast, 2022: 7-8.
    [4] REDDY S S P, SURESH R, HANAMANTRAYGPINDA M B, et al. Use of composite materials and hybrid composites in wind turbine blades[J]. Materials Today: Proceedings,2021,46:2827-2830. doi: 10.1016/j.matpr.2021.02.745
    [5] AUBRYN C, ANNIKA E, ERIC L. Wind turbine blade material in the United States: Quantities, costs, and end-of-life options[J]. Resources, Conservation & Recycling, 2021, 168: 105439.
    [6] COGNE V, PONT S, DOBREV I, et al. Bioinspired turbine blades offer new perspectives for wind energy[J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,2017,473(2198):20160726.S. doi: 10.1098/rspa.2016.0726
    [7] MURRAY R E, SCOTT J, DAVID S, et al. Techno-economic analysis of a megawatt-scale thermoplastic resin wind tubine blade[J]. Renewable Energy, 2019, 131: 111-119.
    [8] BATURKIN D, AHMAT H O, MASMOUDI R, et al.Valorization of recycled FRP materials from wind turbine blades in concrete[J]. Resources, Conservation & Recycling, 2021, 174: 105807.
    [9] GABHALE R R, CHANDRA B D. Comprehensive study of composite materials used in wind turbine blade[J]. International Journal of Latest Trends in Engineering and Technology,2015,6(2):146-155.
    [10] PINTO T H L, GUL W, TORRES L A G, et al. Experimental and numerical comparison of impact behavior between thermoplastic and thermoset composite for wind turbine blades[J]. Materials, 2021, 14: 6377.
    [11] MURRAY R E, SWAN D, SNOWBERG D, et al. , Manufacturing a 9-meter thermoplastic composite wind turbine blade[C]. ASC 32nd Technical Conference. West Lafayette: Purdue University, 2017.
    [12] PETTERSSON J. Analysis and design of an adhesive joint in wind turbine blades[D]. Sweden: Lund University, 2016.
    [13] ZHOU H F, DOU H Y, QIN L Z, et al. A review of full scale structural testing of wind turbine blades[J]. Renewable & Sustainable Energy Reviews,2014,33(2):177-187.
    [14] 李林致. 刍议风力发电的发展现状及趋势[J]. 中国新通信, 2018, 20(19):203-204. doi: 10.3969/j.issn.1673-4866.2018.19.180

    LI Linzhi. Discussion on the development status and trend of wind power generation[J]. China New Communications,2018,20(19):203-204(in Chinese). doi: 10.3969/j.issn.1673-4866.2018.19.180
    [15] 张文毓. 风电叶片复合材料及其应用[J]. 上海电气技术, 2017, 10(4):55-57. doi: 10.3969/j.issn.1674-540X.2017.04.014

    ZHANG Wenyu. Wind power blade composite material and its application[J]. Shanghai Electric Technology,2017,10(4):55-57(in Chinese). doi: 10.3969/j.issn.1674-540X.2017.04.014
    [16] 林刚. 2020全球碳纤维复合材料市场报告[Z]. 2020: 25-26.

    LIN Gang. 2020 Global carbon fiber composites market report[Z]. 2020: 25-26(in Chinese).
    [17] CRISTIAN L T, EDGAR E M, RODOLFO R B. Effects of the vacuum moulding process on the mechanical properties of cotton/epoxy composite[J]. Fibres and Textile in Eastern Europe,2018,26(3):93-97.
    [18] JOAQUIM V, CARLOS G, JAVIER L. Fabric compaction and infiltration during vacuum-assisted resin infusion with and without distribution medium[J]. Journal of Composite Materials,2017,51(5):687-703. doi: 10.1177/0021998316649783
    [19] MOHANT P, KANNY K. Mechanical properties and failure analysis of short kenaf fibre reinforced composites processed by resin casting and vacuum infusion methods[J]. Polymers and Polymer Composites,2018,26(2):189-204. doi: 10.1177/096739111802600207
    [20] 徐立波. VARI工艺影响因素简析[J]. 轻工科技, 2015, 31(6):28-29.

    XU Libo. Brief analysis of the factors affecting VARI process[J]. Light Industry Technology,2015,31(6):28-29(in Chinese).
    [21] 潘利剑, 刘卫平, 陈萍, 等. 真空辅助成型工艺中预成型体的厚度变化与过流控制[J]. 复合材料学报, 2012, 29(5):244-248. doi: 10.13801/j.cnki.fhclxb.2012.05.011

    PAN Lijian, LIU Weiping, CHEN Ping, et al. Thickness variation and overcurrent control of preforms in vacuum assisted forming process[J]. Acta Materiae Compositae Sinica,2012,29(5):244-248(in Chinese). doi: 10.13801/j.cnki.fhclxb.2012.05.011
    [22] COUSINS D S, SUZUKI Y, MURRAY R E, et al. Recycling glass fiber thermoplastic composites from wind turbine blades[J]. Journal of Cleaner Production, 2019, 209: 1252-1263.
    [23] 李书乡, 马全胜, 张顺. 中国高性能碳纤维产业的创新发展[J]. 科技导报, 2018, 36(19):73-80.

    LI Shuxiang, MA Quansheng, ZHANG Shun. Development of high performance carbon fiber industry in China[J]. Science & Technology Review,2018,36(19):73-80(in Chinese).
    [24] 阮芳涛, 施建, 徐珍珍, 等. 碳纤维增强树脂基复合材料的回收及其再利用研究进展[J]. 纺织学报, 2019, 40(6):152-157. doi: 10.13475/j.fzxb.20180802906

    RUAN Fangtao, SHI Jian, XU Zhenzhen, et al. Research progress in recycling and reuse of carbon fiber reinforced resin composites[J]. Journal of Textile Research,2019,40(6):152-157(in Chinese). doi: 10.13475/j.fzxb.20180802906
    [25] ALEXANDER S, NATALIE R, LMAN T. Co-curing of CFRP-steel hybrid joints using the vacuum assisted resin infusion process[J]. Applied Composite Materials,2017,24(5):1137-1149. doi: 10.1007/s10443-016-9575-3
    [26] BUCUR I O, MALAEL I, BREBAN S. Horizontal-axis wind turbine blades manufacture with composite materials[C]//IOP Conference Series: Materials Science and Engineering. Iasi, 2020.
    [27] FRACASSIF T, DONADON M V. Simulation of vauum assisted resin transfer moling prcess through dynamics ystemanalysis[J]. Journal of Composite Materials,2018,52(27):3759-3771. doi: 10.1177/0021998318770000
    [28] 邢丽英, 蒋诗才, 周正刚. 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013, 30(2):1-9.

    XING Liying, JIANG Shicai, ZHOU Zhenggang. Progress of manufacturing technology development of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2013,30(2):1-9(in Chinese).
    [29] 罗益锋, 罗晰旻. 近期碳纤维及其复合材料的新发展[J]. 高科技纤维与应用, 2014, 39(1):1-9. doi: 10.3969/j.issn.1007-9815.2014.01.001

    LUO Yifeng, LUO Ximin. New developments of recent carbon fiber and their composite materials[J]. Hi-Tech Fiber & Application,2014,39(1):1-9(in Chinese). doi: 10.3969/j.issn.1007-9815.2014.01.001
    [30] 高奇. 新形势下我国碳纤维产业发展探讨[J]. 合成纤维工业, 2019, 42(4):58-63.

    GAO Qi. Discussion on development of China carbon fiber industry under new situation[J]. China Synthetic Fiber Industry,2019,42(4):58-63(in Chinese).
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  2393
  • HTML全文浏览量:  673
  • PDF下载量:  358
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-06-14
  • 录用日期:  2022-07-03
  • 网络出版日期:  2022-07-15
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回