留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP加固紧凑拉伸钢试件的疲劳试验研究

郑元鹏 陈涛 黄诚

郑元鹏, 陈涛, 黄诚. CFRP加固紧凑拉伸钢试件的疲劳试验研究[J]. 复合材料学报, 2022, 39(11): 5192-5205. doi: 10.13801/j.cnki.fhclxb.20220622.003
引用本文: 郑元鹏, 陈涛, 黄诚. CFRP加固紧凑拉伸钢试件的疲劳试验研究[J]. 复合材料学报, 2022, 39(11): 5192-5205. doi: 10.13801/j.cnki.fhclxb.20220622.003
ZHENG Yuanpeng, CHEN Tao, HUANG Cheng. Experimental study on fatigue behavior of compact-tension specimens strengthened by CFRP[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5192-5205. doi: 10.13801/j.cnki.fhclxb.20220622.003
Citation: ZHENG Yuanpeng, CHEN Tao, HUANG Cheng. Experimental study on fatigue behavior of compact-tension specimens strengthened by CFRP[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5192-5205. doi: 10.13801/j.cnki.fhclxb.20220622.003

CFRP加固紧凑拉伸钢试件的疲劳试验研究

doi: 10.13801/j.cnki.fhclxb.20220622.003
基金项目: 国家自然科学基金面上项目(51978509)
详细信息
    通讯作者:

    陈涛,博士,教授,博士生导师,研究方向为复合材料结构加固 E-mail: t.chen@tongji.edu.cn

  • 中图分类号: TU398

Experimental study on fatigue behavior of compact-tension specimens strengthened by CFRP

  • 摘要: 以紧凑拉伸试件(Compact-tension specimen,CT试件)为研究对象,针对未补强及不同碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)粘贴补强工况的CT试件开展疲劳试验。以CFRP材料类别、单/双面粘贴与CFRP材料用量作为变量,运用沙滩纹加载制度与非接触式全场应变测量(Digital image correlation,DIC)技术记录测量疲劳裂纹扩展长度与试件CFRP表面应变场,分析CFRP粘贴延长疲劳寿命的作用,从疲劳寿命与疲劳裂纹扩展速率入手,比较疲劳试验结果用以指导CFRP粘贴加固疲劳损伤钢构件。结果表明粘贴CFRP发挥其抗拉和抗压作用可以减小乃至抑制疲劳裂纹扩展速率的增长,从而有效推迟试件疲劳破坏,在特定工况下可最多延长试件疲劳寿命至未补强状态下的3.14倍。其中,双面粘贴的加固效果明显优于单面粘贴;增加碳纤维布的铺贴层数对疲劳寿命的增长具有一定的贡献;碳纤维复材板与试件粘接边缘的脱胶导致其补强效果不及刚度相似的碳纤维布;粘接界面是补强体系破坏过程中的薄弱环节,碳纤维复材板加固试件的破坏模式主要为胶层破坏与复材板脱胶,碳纤维布加固试件的破坏模式为以最内层碳纤维布脱胶与分层主导,含有小范围胶层破坏的混合状态。含裂纹钢构件CFRP粘贴加固的材料与工艺值得进一步改良研究。

     

  • 图  1  紧凑拉伸(CT)试件尺寸

    W—Specimen width

    Figure  1.  Compact-tension (CT) specimen dimensions

    图  2  试件U-1和R-D-4

    Figure  2.  Specimen U-1 and R-D-4

    图  3  试验装置布置

    LED—Light-emitting diodes

    Figure  3.  Test site and instruments

    图  4  沙滩纹加载制度

    Figure  4.  Beach marking loading technique

    图  5  试件疲劳断面

    Figure  5.  Fracture surfaces of specimens

    图  6  CFRP加固紧凑拉伸钢试件疲劳裂纹扩展a-N曲线

    Figure  6.  Fatigue crack propagation a-N curves for the CT specimens strengthened by CFRP

    图  7  CFRP加固紧凑拉伸钢试件疲劳裂纹扩展速率(FCGR)-a关系

    Figure  7.  Fatigue crack growth rate (FCGR)-a curves for the CT specimens strengthened by CFRP

    图  8  Paris公式常数Cm的拟合结果

    da/dN—Fatigue crack growth rate; ΔK—Stress intensity factor range; R2—Coefficient of determination

    Figure  8.  Linear fitting result of Paris law constants C and m

    图  9  CFRP加固紧凑拉伸钢试件应力强度因子(SIF)范围-a曲线

    Figure  9.  Stress intensity factor (SIF) range-a curves for the CT specimens strengthened by CFRP

    图  10  CFRP加固紧凑拉伸钢试件荷载传递效率η-a曲线

    Figure  10.  Load transfer efficiency η-a curves for the CT specimens strengthened by CFRP

    图  11  试件R-D-2碳纤维布裂缝

    DIC—Digital image correlation; εxx—Horizontal strain field

    Figure  11.  A crack in carbon fiber sheets of specimen R-D-2

    图  12  试件R-D-1 P碳纤维复材板可见裂缝

    Figure  12.  A visible crack in CFRP plate of specimen R-D-1 P

    图  13  试件R-D-1横向应变εxx云图

    Figure  13.  Strain field of εxx of specimen R-D-1

    图  14  试件R-D-1竖向应变εyy云图

    axx—Crack size estimation based on horizontal strain field εxx; ayy—Crack size estimation based on vertical strain field εyy

    Figure  14.  Strain field of εyy of specimen R-D-1

    图  15  试验中试件U-1 Back-Face应变最大与最小值

    Figure  15.  Max & min Back-Face strain of specimen U-1

    图  16  试验中试件R-D-1 P碳纤维复材板测点A应变最大与最小值

    Figure  16.  Max & min strain of gauging point A on the CFRP plate of specimen R-D-1 P

    图  17  试验中碳纤维复材板测点B应变最大与最小值

    Figure  17.  Max & min strain of gauging point B on CFRP plate

    图  18  试件R-S-2裂尖应变片的最大与最小值

    Figure  18.  Max & min strain of crack tip strain gauge of specimen R-S-2

    图  19  CFRP粘贴钢构件可能的破坏模式[25,34]

    Figure  19.  Possible failure modes of CFRP-repaired steel components[25,34]

    图  20  试件R-D-1 P的破坏模式

    Figure  20.  Failure modes of specimen R-D-1 P

    图  21  试件R-D-1 P疲劳加载过程中的边缘脱胶裂缝

    Figure  21.  Debonding cracks of specimen R-D-1 P during fatigue loading

    图  22  试件R-D-1的破坏模式

    Figure  22.  Failure modes of specimen R-D-1

    图  23  试件R-D-4的破坏模式

    Figure  23.  Failure mode of specimen R-D-4

    图  24  CFRP加固紧凑拉伸钢试件裂纹脱胶区示意图

    Figure  24.  Schematic view of debonded area for the CT specimens strengthened by CFRP

    表  1  试件编号与补强工况

    Table  1.   Specimen number and repair parameters

    SpecimenPatch configurationCFRP material typeCFRP layer number each side
    U-1Unrepaired
    (Benchmark)
    R-S-2Single-side strengtheningCarbon fiber sheet
    (FTS-C8-30)
    2
    R-D-1Double-side strengthening1
    R-D-22
    R-D-44
    R-D-1 PCFRP plate
    (HM-1.4 T)
    1
    Notes: U-1—Unrepaired specimen; In specimen R-S/D-X (P), R—Repaired specimens, S/D—Single/double-side strengthening, X—Layer number of carbon fiber sheet or CFRP plate on each side, P after X—CFRP plate, otherwise the material type is carbon fiber sheet; CFRP—Carbon fiber reinforced polymer.
    下载: 导出CSV

    表  2  材料性质

    Table  2.   Material properties

    MaterialTensile modulus/GPaTensile strength/MPaThickness/mm
    Steel199.66356.28 (Yield)7.68*
    496.5 (Ultimate)
    Carbon fiber sheet681.3 (Longitudinal)1967 (Longitudinal)0.143
    26.2 (Transverse)205 (Transverse)
    CFRP plate162 (Longitudinal)2439 (Longitudinal)1.4
    Adhesive4260.65-1.31
    Note: *—After rust removal.
    下载: 导出CSV

    表  3  沙滩纹加载制度与结果

    Table  3.   Beach marking loading scenario and results

    SpecimenBase-line cycles per roundMarker load cycles per roundCompleted round number before failure (Marker number)
    U-112 0007 2007
    R-S-215 1309 0008
    R-D-118 09010 00010
    R-D-218 09010 00016
    R-D-420 11013 50012
    R-D-1 P18 00010 00012
    下载: 导出CSV

    表  4  CFRP加固紧凑拉伸钢试件疲劳寿命试验结果

    Table  4.   Fatigue life test results of the compact-tension (CT) specimens strengthened by CFRP

    SpecimenBase-line cycles NBMarker load cycles NMConverted fatigue lifeFatigue life extension ratio
    U-195 03750 400101 3371.00 (Benchmark)
    R-S-2131 32972 000140 3291.38
    R-D-1190 124100 000202 6242.00
    R-D-2298 486160 000318 4863.14
    R-D-4251 800162 000272 0502.68
    R-D-1 P224 100120 000239 1002.36
    下载: 导出CSV
  • [1] CIUPACK Y, LEDECKY L, KASPER Y, et al. Strengthening of steel structures with fatigue cracks using adhesively bonded non-prestressed and prestressed CFRP lamellas[C]//The Proceedings of the 13th International Conference “Modern Building Materials, Structures and Techniques” (MBMST 2019). Vilnius: Vilnius Gediminas Technical University Press, 2019: 252-260.
    [2] 吴刚, 刘海洋, 吴智深, 等. 不同纤维增强复合材料加固钢梁疲劳性能试验研究[J]. 土木工程学报, 2012, 45(4):21-28. doi: 10.15951/j.tmgcxb.2012.04.010

    WU Gang, LIU Haiyang, WU Zhishen, et al. Experimental study of the fatigue performance of steel beams strengthened with different fiber reinforced polymers[J]. China Civil Engineering Journal,2012,45(4):21-28(in Chinese). doi: 10.15951/j.tmgcxb.2012.04.010
    [3] AHMED S, THOSTENSON E T, SCHUMACHER T, et al. Integration of carbon nanotube sensing skins and carbon fiber composites for monitoring and structural repair of fatigue cracked metal structures[J]. Composite Structures,2018,203:182-192.
    [4] TENG J G, YU T, FERNANDO D. Strengthening of steel structures with fiber-reinforced polymer composites[J]. Journal of Constructional Steel Research,2012,78:131-143. doi: 10.1016/j.jcsr.2012.06.011
    [5] FENG P, HU L, ZHAO X L, et al. Study on thermal effects on fatigue behavior of cracked steel plates strengthened by CFRP sheets[J]. Thin-Walled Structures,2014,82:311-320. doi: 10.1016/j.tws.2014.04.015
    [6] YU Q Q, ZHAO X L, AL MAHAIDI R, et al. Tests on cracked steel plates with different damage levels strengthened by CFRP laminates[J]. International Journal of Structural Stability and Dynamics,2014,14(6):1-26.
    [7] WANG H T, WU G, JIANG J B. Fatigue behavior of cracked steel plates strengthened with different CFRP systems and configurations[J]. Journal of Composites for Construction,2016,20(3):04015078. doi: 10.1061/(ASCE)CC.1943-5614.0000647
    [8] 叶华文, KONIG Christian, UMMENHOFER Thomas, 等. 预应力CFRP板加固钢板受拉疲劳性能试验研究[J]. 西南交通大学学报, 2009, 44(6):824-829. doi: 10.3969/j.issn.0258-2724.2009.06.005

    YE Huawen, KONIG Christian, UMMENHOFER Thomas, et al. Experimental investigation of fatigue behavior of tension steel plate reinforced with prestressed CFRP lami-nates[J]. Journal of Southwest Jiaotong University,2009,44(6):824-829(in Chinese). doi: 10.3969/j.issn.0258-2724.2009.06.005
    [9] COLOMBI P, FAVA G, SONZOGNI L. Fatigue crack growth in CFRP-strengthened steel plates[J]. Composites Part B: Engineering,2015,72:87-96. doi: 10.1016/j.compositesb.2014.11.036
    [10] 陈涛, 摇铖. CFRP加固含混合型边裂纹钢板的疲劳性能试验研究[J]. 建筑结构学报, 2021, 42(2):206-212. doi: 10.14006/j.jzjgxb.2020.c175

    CHEN Tao, YAO Cheng. Experimental study on fatigue properties of CFRP-repaired steel plates with a mixed-mode edge crack[J]. Journal of Building Structures,2021,42(2):206-212(in Chinese). doi: 10.14006/j.jzjgxb.2020.c175
    [11] 叶华文, UMMENHOFER T, 强士中. 预应力CFRP板加固钢梁抗弯疲劳试验研究[J]. 公路交通科技, 2009, 26(12):50-55. doi: 10.3969/j.issn.1002-0268.2009.12.011

    YE Huawen, UMMENHOFER T, QIANG Shizhong. Experimental study of flexural fatigue performance of steel girder reinforced by prestressed CFRP plate[J]. Journal of Highway and Transportation Research and Development,2009,26(12):50-55(in Chinese). doi: 10.3969/j.issn.1002-0268.2009.12.011
    [12] CHEN T, GU X, QI M, et al. Experimental study on fatigue behavior of cracked rectangular hollow-section steel beams repaired with prestressed CFRP plates[J]. Journal of Composites for Construction,2018,22(5):04018034. doi: 10.1061/(ASCE)CC.1943-5614.0000872
    [13] SCHIJVE J. Fatigue of structures and materials[M]. Second edition. Delft: Springer, 2009.
    [14] LESIUK G, KATKOWSKI M, CORREIA J, et al. Fatigue crack growth rate in CFRP reinforced constructional old steel[J]. International Journal of Structural Integrity,2018,9(3):381-395. doi: 10.1108/IJSI-08-2017-0050
    [15] HASSAN M M, SHAFIQ M A, MOURAD S A. Experimental study on cracked steel plates with different damage levels strengthened by CFRP laminates[J]. International Journal of Fatigue,2021,142:105914.
    [16] LESIUK G, KATKOWSKI M, DUDA M, et al. Improvement of the fatigue crack growth resistance in long term ope-rated steel strengthened with CFRP patches[J]. Procedia Structural Integrity,2017,5:912-919. doi: 10.1016/j.prostr.2017.07.109
    [17] LESIUK G, PEDROSA B A S, ZIETY A, et al. Minimal inva-sive diagnostic capabilities and effectiveness of CFRP-patches repairs in long-term operated metals[J]. Metals,2020,10:984. doi: 10.3390/met10070984
    [18] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料拉伸试验 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Metallic materials-Tensile testing-Method of test at room temperature: GB/T 228.1—2010[S]. Beijing: China Standards Press, 2010(in Chinese).
    [19] CHEN T, HUANG C. Fatigue tests on edge cracked four-point bend steel specimens repaired by CFRP[J]. Compo-site Structures, 2019, 219: 31-41.
    [20] HUNTSMAN. Araldite 2014 Technical Data Sheet[Z]. Huntsman Advanced Materials (Switzerland) GmbH, 2004.
    [21] American Society for Testing and Materials. Standard test method for measurement of fatigue crack growth rates: ASTM E647-15[S]. West Conshohocken: American Society for Testing and Materials International, 2015.
    [22] 董亮, 童乐为, 彭洋, 等. 应用Beach marking方法检测钢结构疲劳裂纹扩展[J]. 结构工程师, 2011, 27:179-183.

    DONG Liang, TONG Lewei, PENG Yang, et al. Application of beach marking method in the detection of fatigue crack propagation of steel structures[J]. Structural Engineers,2011,27:179-183(in Chinese).
    [23] LI L, CHEN T, GU X, et al. Heat activated SMA-CFRP composites for fatigue strengthening of cracked steel plates[J]. Journal of Composites for Construction,2020,24(6):04020060. doi: 10.1061/(ASCE)CC.1943-5614.0001072
    [24] British Standards Institution. Guide to methods for assessing the acceptability of flaws in metallic structures: BS 7910:2019[S]. United Kingdom: BSI Standards Limited, 2019.
    [25] CHEN T, LI L, ZHANG N, et al. Fatigue performance test on inclined central cracked steel plates repaired with CFRP strand sheets[J]. Thin-Walled Structures, 2018, 130: 414-423.
    [26] LIU H, XIAO Z, ZHAO X L, et al. Prediction of fatigue life for CFRP-strengthened steel plates[J]. Thin-Walled Structures,2009,47(10):1069-1077. doi: 10.1016/j.tws.2008.10.011
    [27] CHEN T, HUANG C, HU L, et al. Experimental study on mixed-mode fatigue behavior of center cracked steel plates repaired with CFRP materials[J]. Thin-Walled Structures,2019,135:486-493. doi: 10.1016/j.tws.2018.11.030
    [28] PARIS P, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Fluids Engineering, Transactions of the ASME,1963,85(4):528-533.
    [29] 郑云, 叶列平, 岳清瑞. CFRP加固疲劳损伤钢结构的断裂力学分析[J]. 工业建筑, 2005, 35(10):79-82. doi: 10.3321/j.issn:1000-8993.2005.10.024

    ZHENG Yun, YE Lieping, YUE Qingrui. Fracture mecha-nics analysis of steel structures with fatigue damages strengthened by CFRP[J]. Industrial Construction,2005,35(10):79-82(in Chinese). doi: 10.3321/j.issn:1000-8993.2005.10.024
    [30] 邹广平, 汪艳伟, 唱忠良, 等. 基于数字散斑相关法的紧凑拉伸试样断裂韧性实验研究[J]. 实验力学, 2015, 30(3):275-281. doi: 10.7520/1001-4888-14-190

    ZOU Guangping, WANG Yanlei, CHANG Zhongliang, et al. Experimental study of compact tension specimen fracture toughness based on digital speckle correlation method[J]. Journal of Experimental Mechanics,2015,30(3):275-281(in Chinese). doi: 10.7520/1001-4888-14-190
    [31] 高红俐, 刘欢, 齐子诚, 等. 基于DIC谐振载荷作用下疲劳裂纹尖端位移应变场测量[J]. 兵器材料科学与工程, 2016, 39(1):16-22. doi: 10.14024/j.cnki.1004-244x.20160104.003

    GAO Hongli, LIU Huan, QI Zicheng, et al. Measurement of displacement and strain fields of fatigue crack tip under resonant loading based on DIC method[J]. Ordnance Material Science and Engineering,2016,39(1):16-22(in Chinese). doi: 10.14024/j.cnki.1004-244x.20160104.003
    [32] TAVARES P J, VIRIATO N, VAZ A P, et al. A dedicated illumination system for fatigue crack-growth measurement[J]. Measurement,2016,90:85-93. doi: 10.1016/j.measurement.2016.04.042
    [33] HU L, WANG Y, FENG P, et al. Debonding development in cracked steel plates strengthened by CFRP laminates under fatigue loading: Experimental and boundary element method analysis[J]. Thin-Walled Structures,2021,166:108038.
    [34] ZHAO X L, ZHANG L. State-of-the-art review on FRP strengthened steel structures[J]. Engineering Structures,2007,29(8):1808-1823. doi: 10.1016/j.engstruct.2006.10.006
    [35] TALREJA R, SINGH C V. Damage and failure of composite materials[M]//Damage and Failure of Composite Materials. First edition. Cambridge: Cambridge University Press, 2012.
  • 加载中
图(24) / 表(4)
计量
  • 文章访问数:  674
  • HTML全文浏览量:  405
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-05-12
  • 录用日期:  2022-06-04
  • 网络出版日期:  2022-06-23
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回