留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒙脱土-弹性体/聚丙烯复合体系纳米颗粒相区分散对结晶形态与介电性能的影响

高俊国 姚子恒 刘艳丽 刘泓铄 王然 刘力伟 郭宁 李丽丽

高俊国, 姚子恒, 刘艳丽, 等. 蒙脱土-弹性体/聚丙烯复合体系纳米颗粒相区分散对结晶形态与介电性能的影响[J]. 复合材料学报, 2023, 40(4): 2085-2095. doi: 10.13801/j.cnki.fhclxb.20220606.001
引用本文: 高俊国, 姚子恒, 刘艳丽, 等. 蒙脱土-弹性体/聚丙烯复合体系纳米颗粒相区分散对结晶形态与介电性能的影响[J]. 复合材料学报, 2023, 40(4): 2085-2095. doi: 10.13801/j.cnki.fhclxb.20220606.001
GAO Junguo, YAO Ziheng, LIU Yanli, et al. Influence of interphase dispersion state of nanoparticles on crystal morphology and dielectric properties in montmorillonite elastomer/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2085-2095. doi: 10.13801/j.cnki.fhclxb.20220606.001
Citation: GAO Junguo, YAO Ziheng, LIU Yanli, et al. Influence of interphase dispersion state of nanoparticles on crystal morphology and dielectric properties in montmorillonite elastomer/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2085-2095. doi: 10.13801/j.cnki.fhclxb.20220606.001

蒙脱土-弹性体/聚丙烯复合体系纳米颗粒相区分散对结晶形态与介电性能的影响

doi: 10.13801/j.cnki.fhclxb.20220606.001
基金项目: 国家自然科学基金资助项目(51577045);黑龙江省博士后科研启动基金(LBH-Q19106)
详细信息
    通讯作者:

    李丽丽,博士,讲师,研究方向为高电压与绝缘性能测试和模拟等 E-mail: lily_li@hrbust.edu.cn

  • 中图分类号: TM215.92;TB332

Influence of interphase dispersion state of nanoparticles on crystal morphology and dielectric properties in montmorillonite elastomer/polypropylene composites

Funds: National Natural Science Foundation of China (51577045); Heilongjiang Postdoctoral Grant (LBH-Q19106)
  • 摘要: 随着电缆需求量日益加大,环保节能绝缘已成为新的发展趋势,研发改进聚丙烯(PP)成为电介质研究学者们的首选。为改善聚丙烯-弹性体共混物的介电性能,采用两步熔融共混法,使用两种不同的增容剂配合有机化处理蒙脱土(MMT)制备MMT-POE/PP纳米改性共混材料,探讨纳米颗粒在共混物材料不同相区内的分散状态,及其对纳米改性效果的影响。利用SEM、静电力显微镜(EFM)、偏光显微镜(PLM)与DSC表征介质的微观结构、结晶形态与结晶参数,并通过对共混物进行击穿性能测试,探讨相区分散对MMT-POE/PP复合材料性能提升的微观机制。实验结果表明:MMT倾向于PP相分散时,其结晶尺寸减小至4.7 μm,结晶速度与结晶度有所上升,这使介电常数和绝缘电导率明显下降,且交流击穿场强从82.69 kV/mm提升至95.16 kV/mm。通过调控纳米颗粒倾向于PP相均匀分散,方可对共混物材料的介电性能起到正向提升的作用。

     

  • 图  1  两步熔融共混法的工艺过程

    Figure  1.  Process of two-step melting blending method

    图  2  有机化处理前后MMT的XRD图谱

    Figure  2.  XRD patterns of MMT before and after organic treatment

    图  3  MMT-POE/PP复合材料的SEM图像

    Figure  3.  SEM images of MMT-POE/PP composites

    图  4  MMT-POE/PP复合材料的EFM相位图

    Figure  4.  EFM phase diagram of MMT-POE/PP composites

    图  5  MMT-POE/PP复合材料的结晶形态及尺寸图

    Figure  5.  Crystal morphologies and size of MMT-POE/PP composites

    图  6  10℃/min升降温速率下MMT-POE/PP复合材料的DSC曲线图

    Figure  6.  DSC curves of MMT-POE/PP composites at 10℃/min heating and cooling rate

    图  7  MMT-POE/PP复合材料的相对介电常数εr (a) 与介电损耗tanδ (b) 随频率的变化

    Figure  7.  Distribution of relative permittivity εr (a) and dielectric loss tanδ (b) vary with frequency of MMT-POE/PP composites

    图  8  MMT-POE/PP复合材料的电导率变化

    Figure  8.  Change of conductivity of MMT-POE/PP composites

    图  9  MMT-POE/PP复合材料交流击穿电压E0与形状参数β分布图

    Figure  9.  E0 and β distribution of alternating current breakdown of MMT-POE/PP composites

    表  1  蒙脱土-弹性体/聚丙烯复合体系(MMT-POE/PP)试样编号和成分组成

    Table  1.   Sample number and composition of montmorillonite elastomer/polypropylene composites (MMT-POE/PP)

    No.Mass ratio
    PPMAH-g-PPPOEMAH-g-POEMMT1010
    PP1000.3
    20POE/80PP 80200.3
    1MMT-20POE/80PP 802010.3
    A-1MMT-20POE/75PP 7552010.3
    B-1MMT-15POE/80PP 8015510.3
    Notes: MAH—Maleic anhydride; POE—Ethylene-octene copolymer.
    下载: 导出CSV

    表  2  MMT-POE/PP试样的等温结晶和熔融过程参数

    Table  2.   Parameters of isothermal crystallization and melting processes of MMT-POE/PP samples

    No.Tm/℃Tc/℃ΔTc/℃Wc/%
    PP170.4118.55.238.3
    20POE/80PP171.6117.15.433.6
    1MMT-20POE/80PP171.1115.15.335.5
    A-1MMT-20POE/75PP171.6116.14.735.7
    B-1MMT-15POE/80PP172.1112.16.133.0
    Notes: Tm and Tc—Melting temperature and crystallization peak temperature in the first stage; ΔTc—Exothermic crystallization peak width in the first stage; Wc—Crystallinity in the first stage.
    下载: 导出CSV
  • [1] 杜伯学, 李忠磊, 周硕凡, 等. 聚丙烯高压直流电缆绝缘研究进展与展望[J]. 电气工程学报, 2021, 16(2):2-11.

    DU Boxue, LI Zhonglei, ZHOU Shuofan, et al. Research progress and perspective of polypropylene-based insulation for HVDC cables[J]. High Voltage Technology,2021,16(2):2-11(in Chinese).
    [2] SOROLLA-ROSARIO D, LIORCA-PORCEL J, PEREZ-MARTINEZ M, et al. Study of microplastics with semicrystalline and amorphous structure identification by TGA and DSC[J]. Journal of Environmental Chemical Engineering,2022,10(1):106886. doi: 10.1016/j.jece.2021.106886
    [3] 赵洪, 袁鑫, 杨佳明, 等. 弹性体/聚丙烯与塑性体/聚丙烯复合材料的力学及介电性能[J]. 高分子材料科学与工程, 2020, 36(10):44-50.

    ZHAO Hong, YUAN Xin, YANG Jiaming, et al. Mechanical and dielectric properties of elastomer/polypropylene and plastomer/polypropylene composites[J]. Polymer Materials Science & Engineering,2020,36(10):44-50(in Chinese).
    [4] OUYANG Y, POURRAHIMI A M, LUND A, et al. High-temperature creep resistant ternary blends based on polyethylene and polypropylene for thermoplastic power cable insulation[J]. Journal of Polymer Science,2021,59(11):1084-1094. doi: 10.1002/pol.20210147
    [5] LI L, CHEN M, ZHU X, et al. Space charge and DC breakdown strength of propylene-ethylene copolymer/polypropylene composite[C]//2021 International Conference on Electrical Materials and Power Equipment (ICEMPE). Chongqing: IEEE, 2021: 1-4.
    [6] SHIRVANIMOGHADDAM K, BALAJI K V, YADAV R, et al. Balancing the toughness and strength in polypropylene composites[J]. Composites Part B: Engineering,2021,223:109121. doi: 10.1016/j.compositesb.2021.109121
    [7] WANG K, CHEN L, GAO Y, et al. Effect of morphology development on the low-temperature tensile properties of PP/POE blends[J]. Journal of Applied Polymer Science,2022,139(21):52192. doi: 10.1002/app.52192
    [8] MATHABANI A, RYTLUOTO I, HE X, et al. Solution modified fumed silica and its effect on charge trapping behavior of PP/POE/silica nanodielectrics[J]. Proceedings of the Nordic Insulation Symposium,2019(26):129-133. doi: 10.5324/nordis.v0i26.3292
    [9] HE X, RYTOLUOTO I, ANYSZKA R, et al. Silica surface-modification for tailoring the charge trapping properties of PP/POE based dielectric nanocomposites for HVDC cable application[J]. IEEE Access,2020,8:87719-87734.
    [10] HE X, SERI P, RYTOLUOTO I, et al. Influence of polar and unpolar silica functionalization on the dielectric properties of PP/POE nanocomposites[C]//2020 IEEE 3rd International Conference on Dielectrics (ICD). Valencia, Spain: IEEE, 2020.
    [11] WEI M, WANG X, ANDRITSCH T. Space charge and breakdown strength behaviour of PP/POE/MgO nanocomposites[C]//2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE). Guangzhou, China: IEEE, 2019.
    [12] DANG B, ZHOU Y, HE J, et al. Relationship between space charge behaviors and trap level distribution in polypropylene/propylene ethylene rubber/ZnO nanocomposites[C]//2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). Toronto, ON, Canada: IEEE, 2016: 595-598.
    [13] LI Z, CAO W, SHENG G, et al. Experimental study on space charge and electrical strength of MgO nano-particles/polypropylene composite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2016,23(3):1812-1819. doi: 10.1109/TDEI.2016.005181
    [14] ADNAN M, ABDUL-MALEK Z, LAU K Y, et al. Effect of titanium oxide nanofiller on the electrical properties of polypropylene nanocomposites for HVDC insulation[C]//2021 IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM). Johor Bahru, Malaysia: IEEE, 2021: 222-225.
    [15] GAO M, YANG J, ZHAO H, et al. Preparation methods of polypropylene/nano-silica/styrene-ethylene-butylene-styrene composite and its effect on electrical properties[J]. Polymers,2019,11(5):797. doi: 10.3390/polym11050797
    [16] ZHA J W, WANG J F, WANG S J, et al. Effect of modified ZnO on electrical properties of PP/SEBS nanocomposites for HVDC cables[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2018,25(6):2358-2365. doi: 10.1109/TDEI.2018.007176
    [17] 高俊国. 聚乙烯/纳米蒙脱土复合物的空间电荷特性与介电性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2013.

    GAO Junguo. Space charge characteristics and dielectric properties of polyethylene/nanomontmorillonite composites[D]. Harbin: Harbin University of Science and Technology, 2013(in Chinese).
    [18] LI B, SALCEDO-GALAN F, XIDAS P I, et al. Improving electrical breakdown strength of polymer nanocomposites by tailoring hybrid-filler structure for high-voltage dielectric applications[J]. ACS Applied Nano Materials,2018,1(9):4401-4407. doi: 10.1021/acsanm.8b01127
    [19] HU J, ZHAO X, XIE J, et al. Influence of organic Na+-MMT on the dielectric and energy storage properties of maleic anhydride-functionalized polypropylene nanocomposites[J]. Journal of Polymer Research,2022,29(5):1-9.
    [20] PENG P, YANG Z, WU M, et al. Effect of montmorillonoite modification and maleic anhydride-grafted polypropylene on the microstructure and mechanical properties of polypropylene/montmorillonoite nanocomposites[J]. Journal of Applied Polymer Science,2013,130(6):3952-3960.
    [21] SHARMA A, BASU S, GUPTA N. Detection of charge around a nanoparticle in a nanocomposite using electrostatic force microscopy[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2020,27(3):866-872. doi: 10.1109/TDEI.2020.008791
    [22] LUNA C B B, SIQUEIRA D D, ARAUJO E M, et al. Evaluation of the SEBS copolymer in the compatibility of PP/ABS blends through mechanical, thermal, thermomechanical properties, and morphology[J]. Polymers for Advanced Technologies,2022,33(1):111-124. doi: 10.1002/pat.5495
    [23] 迟晓红, 俞利, 郑杰, 等. 蒙脱土/聚丙烯复合材料结晶形态及耐电树枝化特性[J]. 复合材料学报, 2015, 32(1):76-84.

    CHI Xiaohong, YU Li, ZHENG Jie, et al. Crystallization morphology and electrical tree resistance characteristics of montmorillonite/polypropylene compsites[J]. Acta Materiae Compositae Sinica,2015,32(1):76-84(in Chinese).
    [24] JIANG H, ZHANG X, GAO J, et al. Dielectric and AC breakdown properties of SiO2/MMT/LDPE micro-nano composites[J]. Energies,2021,14(5):1235. doi: 10.3390/en14051235
    [25] ZHANG X, SHI Z, MA L, et al. Enhanced breakdown strength and electrical tree resistance properties of MMT/SiO2/LDPE multielement composites[J]. Journal of Applied Polymer Science,2019,136(17):47364. doi: 10.1002/app.47364
    [26] 韩永森, 孙健, 张昕, 等. 微纳米SiC/环氧树脂复合材料的界面和非线性电导特性[J]. 复合材料学报, 2020, 37(7):1562-1570.

    HAN Yongsen, SUN Jian, ZHANG Xin, et al. Interface and nonlinear conduction characteristics of micro-nano SiC/epoxy composites[J]. Acta Materiae Compositae Sinica,2020,37(7):1562-1570(in Chinese).
    [27] 徐曼, 冯军强, 曹晓珑. 纳米银-环氧树脂复合电介质的介电特性[J]. 中国电机工程学报, 2009, 29(4):117-122. doi: 10.3321/j.issn:0258-8013.2009.04.019

    XU Man, FENG Junqiang, CAO Xiaolong. Dielectric properties of silver/epoxy composite dielectric[J]. Proceedings of the CSEE,2009,29(4):117-122(in Chinese). doi: 10.3321/j.issn:0258-8013.2009.04.019
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  627
  • HTML全文浏览量:  294
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-08
  • 修回日期:  2022-05-11
  • 录用日期:  2022-05-20
  • 网络出版日期:  2022-06-07
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回