留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位组装沸石咪唑酯骨架对纸基ZnO纳米棒阵列光电性能的影响

于海瀚 谭晓冉 孙术博 张丽娜 朱沛华 于京华 高超民

于海瀚, 谭晓冉, 孙术博, 等. 原位组装沸石咪唑酯骨架对纸基ZnO纳米棒阵列光电性能的影响[J]. 复合材料学报, 2023, 40(4): 2169-2175. doi: 10.13801/j.cnki.fhclxb.20220518.001
引用本文: 于海瀚, 谭晓冉, 孙术博, 等. 原位组装沸石咪唑酯骨架对纸基ZnO纳米棒阵列光电性能的影响[J]. 复合材料学报, 2023, 40(4): 2169-2175. doi: 10.13801/j.cnki.fhclxb.20220518.001
YU Haihan, TAN Xiaoran, SUN Shubo, et al. Effect of in-situ assembling zeolite imidazolate frameworks on the photoelectric properties of paper-based ZnO nanorod array[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2169-2175. doi: 10.13801/j.cnki.fhclxb.20220518.001
Citation: YU Haihan, TAN Xiaoran, SUN Shubo, et al. Effect of in-situ assembling zeolite imidazolate frameworks on the photoelectric properties of paper-based ZnO nanorod array[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2169-2175. doi: 10.13801/j.cnki.fhclxb.20220518.001

原位组装沸石咪唑酯骨架对纸基ZnO纳米棒阵列光电性能的影响

doi: 10.13801/j.cnki.fhclxb.20220518.001
基金项目: 国家自然科学基金(22104043;51872121);泰山学者攀登计划;济南市“一事一议”顶尖人才项目;济南市“高校20条”项目(2018GXRC001)
详细信息
    作者简介:

    朱沛华,博士,副教授,硕士生导师,研究方向为卟啉酞菁大环化合物设计制备及其气敏器件应用 E-mail: chm_zhuph@ujn.edu.cn

    通讯作者:

    朱沛华,博士,副教授,硕士生导师,研究方向为卟啉酞菁大环化合物设计制备及其气敏器件应用 E-mail: chm_zhuph@ujn.edu.cn

    高超民,博士,副教授,硕士生导师,研究方向为功能纳米材料可控制备及其光电转换应用 E-mail: chm_gaocm@163.com

  • 中图分类号: O611.4;O471.5

Effect of in-situ assembling zeolite imidazolate frameworks on the photoelectric properties of paper-based ZnO nanorod array

Funds: National Natural Science Foundation of China (22104043; 51872121); Taishan Scholars Program; Case-by-Case Project for Top Outstanding Talents of Jinan; Project of "20 Items of University" of Jinan (2018GXRC001)
  • 摘要: 性能卓越的光电极材料的设计制备对光电化学(PEC)技术的发展与应用至关重要。近年来,纸基光敏材料以其比表面积大、环境友好且成本低的优点被广泛研究。其中,作为一种高光电活性、高电子迁移率、无毒的光电极材料,纸基ZnO纳米棒被认为具有广阔的应用前景。然而,高载流子复合率及光腐蚀现象严重制约其光电性能的进一步提升。为降低光生载流子复合率并抑制光腐蚀,采用水热法在纸基ZnO表面原位组装沸石咪唑酯骨架材料-8 (ZIF-8),制备纸基一维ZnO/ZIF-8纳米棒阵列光电极。结果显示:ZIF-8均匀、致密分布在纸基ZnO表面,二者界面处无缝结合,利于促进界面电荷传输。同时,原位组装ZIF-8过程中,聚集大量氧空位的ZnO表面被刻蚀并转化为ZIF-8,利于抑制光腐蚀。此外,ZnO与ZIF-8能级匹配,二者结合形成异质结,可实现光生电子与空穴的双向传输,从而有效促进光生载流子分离。与纯ZnO纳米棒相比,纸基ZnO/ZIF-8复合材料展现出更高的光生载流子分离与传输效率、更大的光电流密度及更好的光稳定性。

     

  • 图  1  纸基ZnO ((a)、(b))与纸基ZnO/ZIF-8 ((c)、(d)) 的SEM图像

    Figure  1.  SEM images of paper-based ZnO ((a), (b)) and paper-based ZnO/ZIF-8 ((c), (d))

    图  2  ZnO/ZIF-8纳米棒TEM图像(a)及HRTEM图像(b)

    Figure  2.  TEM image (a) and HRTEM image (b) of ZnO/ZIF-8 nanotube

    d—Lattice fringe spacing

    图  3  ZnO/ZIF-8 纳米棒(NRs)与ZnO NRs的XRD图谱

    Figure  3.  XRD patterns of ZnO/ZIF-8 nanorods (NRs) and ZnO NRs

    图  4  不同溶剂组成条件下ZnO/ZIF-8的SEM图像:(a) 纯水;(b) 体积比DMF/H2O=1∶1;(c) 体积比DMF/H2O=2∶1;(d) 纯DMF

    Figure  4.  SEM images of the ZnO/ZIF-8 obtained under different solvent condition: (a) Pure water; (b) Volume ratio DMF/H2O=1∶1; (c) Volume ratio DMF/H2O=2∶1; (d) Pure DMF

    图  5  ZnO/ZIF-8和ZnO的光电流密度(a)、光稳定性(b)、光致发光(PL)图谱(c)和时间分辨光致发光(TRPL)图谱(d)

    Figure  5.  Photocurrent density (a), photostability (b), photoluminescence (PL) spectra (c) and time-resolved photoluminescence (TRPL) spectra (d) of ZnO/ZIF-8 and ZnO

    图  6  ZnO/ZIF-8异质结能带结构及其光生电子-空穴迁移过程示意图

    Figure  6.  Schematic diagram of band structure and photogenerated electron-hole migration of ZnO/ZIF-8 heterojunction

    CB—Conduction band; VB—Valence band; Eg—Energy band gap; E—Potential

    表  1  ZnO与ZnO/ZIF-8的TRPL拟合结果

    Table  1.   TRPL fitting results of the ZnO and ZnO/ZIF-8

    τ1/nsA1τ2/nsA2
    ZnO0.27010.46890.27010.4687
    ZnO/ZIF-80.20920.58830.20920.5883
    Notes: τ1—Short lifetime constant; τ2—Long lifetime constant; A—Relative amplitudes.
    下载: 导出CSV
  • [1] BRUNETTI F, OPERAMOLLA A, CASTRO-HERMOSA S, et al. Printed solar cells and energy storage devices on paper substrates[J]. Advanced Functional Materials,2019,29(21):1806798. doi: 10.1002/adfm.201806798
    [2] WENG B, GRICE C R, GE J, et al. Barium bismuth niobate double perovskite/tungsten oxide nanosheet photoanode for high-performance photoelectrochemical water splitting[J]. Advanced Energy Materials,2018,8(10):1701665.
    [3] MASCARERRI L, DUTTA A, KMENT S, et al. Plasmon-enhanced photoelectrochemical water splitting for efficient renewable energy storage[J]. Advanced Materials,2019,31(31):1805513. doi: 10.1002/adma.201805513
    [4] XIAO M, LUO B, WANG Z, et al. Recent advances of metal oxide photoanodes: Engineering of charge separation and transportation toward efficient solar water splitting[J]. Solar RRL,2020,4(8):1900509. doi: 10.1002/solr.201900509
    [5] SU B, WU Y, JIANG L. The art of aligning one-dimensional (1D) nanostructures[J]. Chemical Society Reviews,2012,41(23):7832-7856. doi: 10.1039/c2cs35187k
    [6] TANG Y, SUN H, QIN Z, et al. Bioinspired photocatalytic ZnO/Au nanopillar-modified surface for enhanced antibacterial and antiadhesive property[J]. Chemical Engineering Journal,2020,398:125575. doi: 10.1016/j.cej.2020.125575
    [7] RUDD A L, BRESLIN C B. Photo-induced dissolution of zinc in alkaline solutions[J]. Electrochimica Acta,2000,45(10):1571-1579. doi: 10.1016/S0013-4686(99)00322-9
    [8] FU H, XU T, ZHU S, et al. Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60[J]. Environmental Science & Technology,2008,42(21):8064-8069.
    [9] ZHANG C, FEI W, WANG H, et al. p-n heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol a in water[J]. Journal of Hazardous Materials,2020,399:123109. doi: 10.1016/j.jhazmat.2020.123109
    [10] YIN B, ZHANG H, QIU Y, et al. Piezo-phototronic effect enhanced self-powered and broadband photodetectors based on Si/ZnO/CdO three-component heterojunctions[J]. Nano Energy,2017,40:440-446. doi: 10.1016/j.nanoen.2017.08.036
    [11] YANG Y, GAO P, WANG Y, et al. A direct charger transfer from interface to surface for the highly efficient spatial separation of electrons and holes: The construction of Ti—C bonded interfaces in TiO2-C composite as a touchstone for photocatalytic water splitting[J]. Nano Energy,2017,33:29-36. doi: 10.1016/j.nanoen.2017.01.030
    [12] TANG Z, ZHU F, ZHOU J, et al. Monolithic NF@ZnO/Au@ZIF-8 photocatalyst with strong photo-thermal-magnetic coupling and selective-breathing effects for boosted conversion of CO2 to CH4[J]. Applied Catalysis B: Environmental,2022,309:121267. doi: 10.1016/j.apcatb.2022.121267
    [13] WEN M, SONG S, LIU Q, et al. Manipulation of plasmon-induced hot electron transport in Pd/MoO3-x@ZIF-8: Boosting the activity of Pd-catalyzed nitroaromatic hydrogenation under visible-light irradiation[J]. Applied Catalysis B: Environmental,2021,282:119511. doi: 10.1016/j.apcatb.2020.119511
    [14] KIM H, KIM W, PARK J, et al. Surface conversion of ZnO nanorods to ZIF-8 to suppress surface defects for a visible-blind UV photodetector[J]. Nanoscale,2018,10(45):21168-21177. doi: 10.1039/C8NR06701E
    [15] ZHAN W W, KUANG Q, ZHOU J Z, et al. Semiconductor@metal-organic framework core-shell heterostructures: A case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response[J]. Journal of the American Chemical Society,2013,135(5):1926-1933. doi: 10.1021/ja311085e
    [16] YANG H, ZHANG Y, ZHANG L, et al. Stackable lab-on-paper device with all-in-one au electrode for high-efficiency photoelectrochemical cyto-sensing[J]. Analytical Chemistry,2018,90(12):7212-7220. doi: 10.1021/acs.analchem.8b00153
    [17] YUAN K, YIN X, LI J, et al. Preparation and DSC application of the size-tuned ZnO nanoarrays[J]. Journal of Alloys and Compounds,2010,489(2):694-699. doi: 10.1016/j.jallcom.2009.09.156
    [18] PAN Y, LIU Y, ZENG G, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system[J]. Chemical Communications,2011,47(7):2071-2073. doi: 10.1039/c0cc05002d
    [19] LI X, LIU S, FAN K, et al. MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting[J]. Advanced Energy Materials,2018,8(18):1800101. doi: 10.1002/aenm.201800101
    [20] GAO C, XUE J, ZHANG L, et al. Paper-based origami photoelectrochemical sensing platform with TiO2/Bi4NbO8Cl/Co-Pi cascade structure enabling of bidirectional modulation of charge carrier separation[J]. Analytical Chemistry,2018,90(24):14116-14120. doi: 10.1021/acs.analchem.8b04662
    [21] YU X, WANG S, ZHANG X, et al. Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing[J]. Nano Energy,2018,46:29-38. doi: 10.1016/j.nanoen.2018.01.033
    [22] SHAO M, NING F, WEI M, et al. Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting[J]. Advanced Functional Materials,2014,24(5):580-586. doi: 10.1002/adfm.201301889
    [23] PATIL R P, MAHADIK M A, BAE H S, et al. Porous Zn1-xCdxS nanosheets/ZnO nanorod heterojunction photoanode via self-templated and cadmium ions exchanged conversion of ZnS(HDA)0.5 nanosheets/ZnO nanorod[J]. Chemical Engineering Journal,2020,402:126153. doi: 10.1016/j.cej.2020.126153
    [24] GU M, LI Y, ZHANG M, et al. Bismuth nanoparticles and oxygen vacancies synergistically attired Zn2SnO4 with optimized visible-light-active performance[J]. Nano Energy,2021,80:105415. doi: 10.1016/j.nanoen.2020.105415
    [25] WANG S, HE T, CHEN P, et al. In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes[J]. Advanced Materials,2020,32(26):e2001385. doi: 10.1002/adma.202001385
    [26] NING X, YIN D, FAN Y, et al. Plasmon-enhanced charge separation and surface reactions based on Ag-loaded transition-metal hydroxide for photoelectrochemical water oxidation[J]. Advanced Energy Materials,2021,11(17):2100405. doi: 10.1002/aenm.202100405
    [27] GRAU-CRESPO R, AZIZ A, COLLINS A W, et al. Modelling a linker mix-and-match approach for controlling the optical excitation gaps and band alignment of zeolitic imidazolate frameworks[J]. Angewandte Chemie International Edition,2016,55(52):16012-16016. doi: 10.1002/anie.201609439
    [28] LIN Y C, PENG C K, LIM S C, et al. Tailoring the surface oxygen engineering of a carbon-quantum-dot-sensitized ZnO@H-ZnO1-x multijunction toward efficient charge dynamics and photoactivity enhancement[J]. Applied Catalysis B: Environmental,2021,285:119846. doi: 10.1016/j.apcatb.2020.119846
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  713
  • HTML全文浏览量:  420
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2022-04-30
  • 录用日期:  2022-05-08
  • 网络出版日期:  2022-05-19
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回