留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿度响应致动器的研究进展和展望

郑宗敏 何田 杨震 李征

郑宗敏, 何田, 杨震, 等. 湿度响应致动器的研究进展和展望[J]. 复合材料学报, 2023, 40(3): 1354-1364. doi: 10.13801/j.cnki.fhclxb.20220511.001
引用本文: 郑宗敏, 何田, 杨震, 等. 湿度响应致动器的研究进展和展望[J]. 复合材料学报, 2023, 40(3): 1354-1364. doi: 10.13801/j.cnki.fhclxb.20220511.001
ZHENG Zongmin, HE Tian, YANG Zhen, et al. Research progress and the prospect of humidity response actuators[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1354-1364. doi: 10.13801/j.cnki.fhclxb.20220511.001
Citation: ZHENG Zongmin, HE Tian, YANG Zhen, et al. Research progress and the prospect of humidity response actuators[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1354-1364. doi: 10.13801/j.cnki.fhclxb.20220511.001

湿度响应致动器的研究进展和展望

doi: 10.13801/j.cnki.fhclxb.20220511.001
基金项目: 国家自然科学基金(21805146)
详细信息
    通讯作者:

    郑宗敏,博士,讲师,硕士生导师,研究方向为复合膜及储能材料 E-mail: zmzhneg@qdu.edu.cn

  • 中图分类号: TB332

Research progress and the prospect of humidity response actuators

Funds: National Natural Science Foundation (21805146)
  • 摘要: 本文总结了近几年湿度响应致动器的研究进展,从湿度响应致动器分类和驱动原理出发,主要讨论了响应性材料和致动器结构设计,对湿度响应材料目前的发展现状和存在的关键科学难点进行了系统的总结,旨在为具有新颖功能的智能微型致动器提供新的设计思路。多刺激响应、可编程,多功能和驱动-传感-控制一体化等多学科交叉研究方向将是未来湿度响应致动器研究新的突破点。

     

  • 图  1  不同结构致动器的变形原理示意图:(a) 单层薄膜致动器;(b) 双层薄膜致动器;(c) 纤维拉伸;(d) 扭转致动器;(e) 球形致动器

    Figure  1.  Schematic diagram of deformation principle of actuator with different structure: (a) Single layer film actuator; (b) Double layer film actuator; (c) Stretch fibrous actuators; (d) Torsion fibrous actuators; (e) Spherical actuators

    LA—Length of active layer; LI—Length of inert layer; L0—Initial length; ΔL—Length change

    图  2  薄膜致动器 (a) 和纤维扭转致动器 (b)的致动机制示意图

    Figure  2.  Schematic diagram of actuating mechanism of layer film actuator (a) and fibrous torsion actuator (b)

    L—Length of the actuator; θ—Angle of bend; θ/2—String cut angle of the actuator; x, y—Horizontal and vertical displacement of the actuator; r—Radius of the actuator; α—Offset angle; h—Distance from yarn surface to center

    图  3  ((a), (b)) 亲水改性的碳纳米管 (CNTs)纤维致动器示意图和操控智能窗开关应用[13];((c), (d)) 聚对苯并二异唑纳米纤维(PBONF)增强的CNT/聚乙烯醇(PVA)双层薄膜致动器的微观结构和晴雨天预测应用[15];((e), (f)) 双向取向聚丙烯(BOPP)-CNT纸复合薄膜致动器的微观结构和湿度响应性能[16];(g) 壳聚糖(CS)/多壁碳纳米管(MWCNTs)复合薄膜致动器举重物展示[17]

    Figure  3.  ((a), (b)) Schematic diagram of a hydrophilic modified carbon nanotubes (CNTs) fiber actuator and application of a control intelligent window switch[13]; ((c), (d)) Microstructure of poly p-benzodiisazole nanofibers (PBONF) reinforced CNT/ polyvinyl alcohol (PVA) double film actuator and its application in sunny and rainy weather prediction[15]; ((e), (f)) Microstructure and humidity response of biaxially-oriented polypropylene (BOPP)-CNT paper composite film actuator[16]; (g) Weight lifting display of chitosan (CS)/multi-wall carbon nanotubes (MWCNTs) composite thin film actuator[17]

    RH—Relative humidity; HSF—Hydrophilic secondary fiber

    图  4  (a) 氧化石墨烯(GO)纤维在不同湿度下的变形[19];GO薄膜的湿致变形原理 (b) 和举起8倍自身重货物照片 (c)[20]

    Figure  4.  (a) Deformation of graphene oxide (GO) fiber under different humidity[19]; Wet deformation principle of GO film (b) and the digital photo for lifting an object of 8 times its own mass (c)[20]

    图  5  ((a), (b)) 不对称结构的GO膜的制备流程和湿度响应性能备流程和湿度响应性能[21];((c), (d)) 单一周期梯度结构GO薄膜的结构示意图和湿度响应性能[22];((e)~(g)) 周期性格栅结构GO薄膜致动器的制备流程和不同格栅间距薄膜湿度响应性能[23]

    Figure  5.  ((a), (b)) Preparation process and humidity response of asymmetric GO membrane[21]; ((c), (d)) Structure diagram and humidity response performance of GO films with single period gradient structure[22]; ((e)-(g)) Fabrication process of periodic grid structure GO film actuator and humidity response with different grid spacing[23]

    AGO-S—Smooth layer of the AGO film; AGO-W—Wavy layer of the AGO film; F1—Reacting forces; PDMS—Polydimethylsiloxane

    图  6  (a) 自支撑MXene薄膜致动器的结构示意图[28];MXene/碳纳米纤维(CNF)/聚多巴胺(PDA)(G-MXCP)薄膜致动器的结构示意图 (b) 和爬行器的踩踏实验图 (c)[29]; MXene/GO薄膜致动器的微观结构图 (d) 和电磁屏蔽性能 (e)[30]

    Figure  6.  (a) Schematic diagram of self-standing MXene membrane actuator[28]; Schematic diagram of MXene/carbon nanofiber (CNF)/polydopamine (PDA) (G-MXCP) film actuator (b) and the trample of the tractor (c)[29]; Microstructure diagram (d) and electromagnetic shielding performance of MXene/GO film actuator (e)[30]

    PI—Polyimide

  • [1] ILAMI M, BAGHERI H, AHMED R, et al. Materials, actuators, and sensors for soft bioinspired robots[J]. Advanced Materials,2020,33(19):2003139.
    [2] SON H, YOON C. Advances in stimuli-responsive soft robots with integrated hybrid materials[J]. Actuators,2020,9:115. doi: 10.3390/act9040115
    [3] 邢志广, 林俊, 赵建文. 人工肌肉驱动器研究进展综述[J]. 机械工程学报, 2021, 57(9):1-11. doi: 10.3901/JME.2021.09.001

    XING Zhiguang, LIN Jun, ZHAO Jianwen. A review of the research progress of artificial muscle actuator[J]. Journal of Mechanical Engineering,2021,57(9):1-11(in Chinese). doi: 10.3901/JME.2021.09.001
    [4] PARKA Y, CHEN X. Water-responsive materials for sustainable energy applications[J]. Journal of Materials Che-mistry A,2020,8:15227-15244. doi: 10.1039/D0TA02896G
    [5] NG C S X, TAN M W M, XU C Y, et al. Locomotion of miniature soft robots[J]. Advanced Materials,2021,33(19):e2003558. doi: 10.1002/adma.202003558
    [6] FOROUGHI J, SPINKS G. Carbon nanotube and graphene fiber artificial muscles[J]. Nanoscale Advances,2019,1:4592-4614. doi: 10.1039/C9NA00038K
    [7] WANG Y, WANG Z, LU Z Y, et al. Humidity- and water-responsive torsional and contractile lotus fiber yarn artificial muscles[J]. ACS Applied Materials & Interfaces,2021,13(5):6642-6649.
    [8] LI X F, ZHUANG Z, QI D, et al. High sensitive and fast response humidity sensor based on polymer composite nanofibers for breath monitoring and non-contact sensing[J]. Sensors and Actuators B: Chemical,2021,330:129239.
    [9] JING Y M, SHI Q W, HOU C Y, et al. Carbon-based thin-film actuator with 1D to 2D transitional structure applied in smart clothing[J]. Carbon,2020,168:546-552. doi: 10.1016/j.carbon.2020.06.074
    [10] DINGLER C, MULLER H, WIELAND M, et al. From understanding mechanical behavior to curvature prediction of humidity-triggered bilayer actuators[J]. Advanced Materials,2021,33(9):e2007982. doi: 10.1002/adma.202007982
    [11] AMJADI M, S M. High-performance multiresponsive paper actuators[J]. ACS Nano,2016,10(11):10202-10210. doi: 10.1021/acsnano.6b05545
    [12] LI M T, WANG X, DONG B, et al. In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator[J]. Nature Communications,2020,11(1):3988. doi: 10.1038/s41467-020-17775-4
    [13] LIMA M D, LI N, JUNG DE ANDRADE M, et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles[J]. Science,2012,338:928-932. doi: 10.1126/science.1226762
    [14] HE S S, CHEN P N, QIU L B, et al. A mechanically actuating carbon-nanotube fiber in response to water and moisture[J]. Angewandte Chemie,2015,54(49):14880-14884. doi: 10.1002/anie.201507108
    [15] CHEN M L, FRUEH J, WANG D L, et al. Polybenzoxazole nanofiber reinforced moisture-responsive soft actuators[J]. Scientific Reports,2017,7(1):769. doi: 10.1038/s41598-017-00870-w
    [16] ZHOU P D, CHEN L Z, YAO L Q, et al. Humidity- and light-driven actuators based on carbon nanotube-coated paper and polymer composite[J]. Nanoscale,2018,10(18):8422-8427. doi: 10.1039/C7NR09580E
    [17] CHEN H, GE Y, YE S, et al. Water transport facilitated by carbon nanotubes enables a hygroresponsive actuator with negative hydrotaxis[J]. Nanoscale,2020,12(10):6104-6110. doi: 10.1039/D0NR00932F
    [18] JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science,2014,343(6172):752. doi: 10.1126/science.1245711
    [19] CHENG H H, LIU J, ZHAO Y, et al. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots[J]. Angewandte Chemie International Edition,2013,52(40):10482-10486. doi: 10.1002/anie.201304358
    [20] GE Y H, CAO R, YE S J, et al. A bio-inspired homogeneous graphene oxide actuator driven by moisture gradients[J]. Chemical Communications,2018,54(25):3126-3129. doi: 10.1039/C8CC00394G
    [21] QIU Y Y, WANG M T, ZHANG W Z, et al. An asymmetric graphene oxide film for developing moisture actuators[J]. Nanoscale,2018,10(29):14060-14066. doi: 10.1039/C8NR01785A
    [22] WANG M T, LI Q C, SHI J X, et al. Bio-inspired high sensitivity of moisture-mechanical GO films with period-gradient structures[J]. ACS Applied Materials & Interfaces,2020,12(29):33104-33112.
    [23] ZHANG Y L, LIU Y Q, HAN D D, et al. Quantum-confined-superfluidics-enabled moisture actuation based on unilaterally structured graphene oxide papers[J]. Advanced Materials,2019,31(32):e1901585.
    [24] LI H, WANG J F. Ultrafast yet controllable dual-responsive all-carbon actuators for implementing unusual mechanical movements[J]. ACS Applied Materials & Interfaces,2019,11(10):10218-10225.
    [25] SUN H B, CHEN Z B, MAO J W, et al. Programmable deformation of patterned bimorph actuator swarm[J]. National Science Review,2020,7(4):775-785. doi: 10.1093/nsr/nwz219
    [26] YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies[J]. Advanced Materials,2020,32(9):1906769. doi: 10.1002/adma.201906769
    [27] WANG J F, MA H X, LIU Y Y, et al. MXene-based humidity-responsive actuators: Preparation and properties[J]. ChemPlusChem,2021,86(3):406-417. doi: 10.1002/cplu.202000828
    [28] WANG J F, LIU Y Y, CHENG Z J, et al. Highly conductive MXene film actuator based on moisture gradients[J]. Angewandte Chemie International Edition, 2020, 59(33): 14029-14033.
    [29] CAO J, ZHOU Z H, SONG Q C, et al. Ultrarobust Ti3C2Tx MXene-based soft actuators via bamboo-Inspired mesoscale assembly of hybrid nanostructures[J]. ACS Nano,2020,14(6):7055-7065. doi: 10.1021/acsnano.0c01779
    [30] LI L L, ZHAO S, LUO X J, et al. Smart MXene-based Janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances[J]. Carbon,2021,175:594-602. doi: 10.1016/j.carbon.2020.10.090
    [31] ZHOU Z X, ZHANG Y Y, SHEN Y F, et al. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more[J]. Chemical Society Reviews,2018,47(7):2298-2321. doi: 10.1039/C7CS00840F
    [32] RONO N, KIBET J K, MARTINCIGH B S, et al. A review of the current status of graphitic carbon nitride[J]. Critical Reviews in Solid State and Materials Sciences,2021,46(3):189-217.
    [33] ARAZOE H, MIYAJIMA D, AKAIKE K, et al. An autonomous actuator driven by fluctuations in ambient humidity[J]. Nature Materials,2016,15:1084-1089. doi: 10.1038/nmat4693
    [34] WU N N, BAI X, PAN D, et al. Recent advances of asymmetric supercapacitors[J]. Advanced Materials Interfaces,2020,8(1):2001710.
    [35] OLIVA P, LEONARDI J, LAURENT J F, et al. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides[J]. Journal of Power Sources,1982,8:229-255. doi: 10.1016/0378-7753(82)80057-8
    [36] KWAN K W, NGAN A H W. A high-performing, visible-light-driven actuating material responsive to ultra-low light intensities[J]. Advanced Materials Technologies,2019,4(12):1900746. doi: 10.1002/admt.201900746
    [37] RAMESH T N, VISHNU KAMATH P. The effect of 'crystallinity' and structural disorder on the electrochemical performance of substituted nickel hydroxide electrodes[J]. Journal of Solid State Electrochemistry,2008,13(5):763-771.
    [38] KWAN K W, NGAN A H W. Visible-light-driven, nickel-doped cobalt oxides/hydroxides actuators with high stability[J]. ACS Applied Materials & Interfaces,2020,12(27):30557-30564.
    [39] TROYANO J, CARNE-SANCHEZ A, PEREZ-CARVAJAL J, et al. A Self-folding polymer film based on swelling metal-organic frameworks[J]. Angewandte Chemie,2018,57(47):15420-15424. doi: 10.1002/anie.201808433
    [40] YANG M F, WANG S Q, LIU Z Y, et al. Fabrication of moisture-responsive crystalline smart materials for water harvesting and electricity transduction[J]. Journal of the American Chemical Society,2021,143(20):7732-7739. doi: 10.1021/jacs.1c01831
    [41] WANG W, XIANG C X, LIU Q Z, et al. Natural alginate fiber-based actuator driven by water or moisture for energy harvesting and smart controller applications[J]. Journal of Materials Chemistry A,2018,6(45):22599-22608. doi: 10.1039/C8TA08064J
    [42] ZHAO Z, HWANG Y, YANG Y, et al. Actuation and locomotion driven by moisture in paper made with natural pollen[J]. Proceedings of the National Academy of Sciences,2020,117(16):8711-8718. doi: 10.1073/pnas.1922560117
    [43] BEREGOI M, PREDA N, EVANGHELIDIS A, et al. Versatile actuators based on polypyrrole-coated metalized eggshell membranes[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):10173-10181.
    [44] LIU D B, TARAKANOVA A, HSU C C, et al. Spider dragline silk as torsional actuator driven by humidity[J]. Science Advances,2019,5(3):aau9183. doi: 10.1126/sciadv.aau9183
    [45] JIA T J, WANG Y, DOU Y Y, et al. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles[J]. Advanced Functional Materials,2019,29(18):1808241. doi: 10.1002/adfm.201808241
    [46] LV C, XIA H, SHI Q, et al. Sensitively humidity-driven actuator based on photopolymerizable PEG-DA films[J]. Advanced Materials Interfaces,2017,4(9):1601002. doi: 10.1002/admi.201601002
    [47] SHIN B, HA J, LEE M, et al. Hygrobot: A self-locomotive ratcheted actuator powered by environmental humidity[J]. Science Robotics,2018,3:eaar2629. doi: 10.1126/scirobotics.aar2629
    [48] DOU Y Y, WANG Z P, HE W Q, et al. Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres[J]. Nature Communications,2019,10(1):5293. doi: 10.1038/s41467-019-13257-4
    [49] WANG Y R, FENG P P, LIU R, et al. Rational design of a porous nanofibrous actuator with highly sensitive, ultrafast, and large deformation driven by humidity[J]. Sensors and Actuators B: Chemical,2021,330:129236. doi: 10.1016/j.snb.2020.129236
    [50] REN Z W, DING Y F, NIE J H, et al. Environmental energy harvesting adapting to different weather conditions and self-powered vapor sensor based on humidity-responsive triboelectric nanogenerators[J]. ACS Applied Materials& Interfaces,2019,11(6):6143-6153.
    [51] 王格格, 张居中, 刘水任, 等. 响应性交联液晶高分子仿生致动器的研究进展[J]. 高分子学报, 2021, 52(2):124-145.

    WANG Gege, ZHANG Juzhong, LIU Shuiren, et al. Research progress of liquid crystal polymer biomimetic actuators in response to sexual intercourse[J]. Acta Polymerica Sinica,2021,52(2):124-145(in Chinese).
    [52] LIU Y Y, XU B, SUN S T, et al. Humidity- and photo-induced mechanical actuation of cross-linked liquid crystal polymers[J]. Advanced Materials,2017,29(9):1604792. doi: 10.1002/adma.201604792
  • 加载中
图(6)
计量
  • 文章访问数:  1099
  • HTML全文浏览量:  642
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-23
  • 修回日期:  2022-04-23
  • 录用日期:  2022-05-05
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回