留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

树脂基复合材料制件微波固化数值模拟

龙习坤 李树健 陈蓉 曹正 李常平 常腾飞

龙习坤, 李树健, 陈蓉, 等. 树脂基复合材料制件微波固化数值模拟[J]. 复合材料学报, 2023, 40(4): 2415-2426. doi: 10.13801/j.cnki.fhclxb.20220419.009
引用本文: 龙习坤, 李树健, 陈蓉, 等. 树脂基复合材料制件微波固化数值模拟[J]. 复合材料学报, 2023, 40(4): 2415-2426. doi: 10.13801/j.cnki.fhclxb.20220419.009
LONG Xikun, LI Shujian, CHEN Rong, et al. Numerical simulation of microwave curing of resin matrix composites workpiece[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2415-2426. doi: 10.13801/j.cnki.fhclxb.20220419.009
Citation: LONG Xikun, LI Shujian, CHEN Rong, et al. Numerical simulation of microwave curing of resin matrix composites workpiece[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2415-2426. doi: 10.13801/j.cnki.fhclxb.20220419.009

树脂基复合材料制件微波固化数值模拟

doi: 10.13801/j.cnki.fhclxb.20220419.009
基金项目: 国家自然科学基金(51975208);湖南省自然科学基金(2020 JJ4301)
详细信息
    通讯作者:

    李树健,博士,副教授,硕士生导师,研究方向为树脂基复合材料成型与切削加工技术 E-mail: smart0110@126.com

  • 中图分类号: TQ327.3

Numerical simulation of microwave curing of resin matrix composites workpiece

Funds: National Natural Science Foundation of China (51975208); Natural Science Foundation of Hunan Province (2020 JJ4301)
  • 摘要: 以T800碳纤维/X850环氧树脂复合材料T型制件为结合对象,利用COMSOL Multiphysics仿真软件,建立了反映复合材料制件单馈口谐振腔体微波固化的有限元仿真模型,研究了微波腔体和制件内部的电磁场、温度场、固化度场的分布规律及其与微波输入功率的映射关系。结果表明:在微波腔体内和制件内存在相反的电场强度分布,在复合材料制件内,远离微波馈入端口的区域的电场强度要高于近馈入端口区域,且在制件棱角区域,电场强度存在较强的尖端效应;随微波输入功率增加,微波腔体及制件内部的电场强度均随之增加,制件内电场强度最大值出现在上、下表面,且下表面温度明显较上表面高;提高微波输入功率会导致制件升温过快,进而诱发温度及固化度梯度。在升温中后期的制件厚度方向,温度和固化度梯度较明显。本文推荐微波输入功率应控制在500 W以内。

     

  • 图  1  T型制件微波固化建模示意图:(a) 仿真几何模型;(b) T型件几何模型及探针布置;(c) 网格质量云图;(d) 特征边界对流示意图

    Figure  1.  Schematic diagram of microwave curing modeling of T-shaped workpiece: (a) Simulation geometry model; (b) Geometric model and probe arrangement of T-shaped parts; (c) Grid quality cloud chart; (d) Characteristic boundary convection diagram

    T800/X850—Carbon fiber/epoxy resin; f—Microwave frequency; Pa—Initial air pressure; SIBC—Impedance boundary condition; H—Boundary feature height; L—Boundary feature length; Pin—Input power

    图  2  微波固化数值模拟流程图

    Figure  2.  Flow chart of microwave curing numerical simulation

    t1—Curing heating time; t2—Holding time; t—Total curing time

    图  3  T800/X850复合材料制件电磁场分布云图 (输入功率Pin=200 W):(a) 谐振腔体电场分布云图;(b) 沿 XZ 平面及 XY 平面剖切的模型域内电磁场分布;(c) 模型域内的磁场分布;(d) 制件内部的电场分布

    Figure  3.  Cloud diagram of electromagnetic field distribution of T800/X850 composites workpiece (Input power Pin=200 W): (a) Nephogram of electric field distribution in resonant cavity; (b) Electromagnetic field distribution in the model domain cut along the XZ and XY planes; (c) Magnetic field distribution in the model domain; (d) Electric field distribution inside the workpiece

    图  4  T800/X850复合材料制件环境域及其域内的电场强度E

    Figure  4.  Electric field strength E in environment and in T800/X850 composites workpiece

    图  5  T800/X850复合材料制件域内中轴线的电场强度

    Figure  5.  Electric field intensity of central axis in T800/X850 composites workpiece

    图  6  T800/X850复合材料的电阻损耗-温度-输入功率关系

    Figure  6.  Relationship of resistance loss-temperature-input power of T800/X850 composites

    图  7  T800/X850复合材料固化工艺曲线(a)与微波冷、热点分布(b)

    Figure  7.  Curing curve (a) and distribution of microwave cold and hot spot (b) of T800/X850 composites

    图  8  T800/X850复合材料制件温度场分布云图 (Pin=200 W)

    Figure  8.  Cloud diagram of temperature field distribution of T800/X850 composites workpiece (Pin=200 W)

    图  9  微波输入功率对T800/X850复合材料升温过程的影响

    Figure  9.  Effect of microwave input power on temperature rising process of T800/X850 composites

    δTmax—Maximum temperature gradient value

    图  10  Pin对T800/X850复合材料制件固化度的影响

    Figure  10.  Effect of Pin on curing degree of T800/X850 composite workpiece

    αave—Average curing degree; ∆αmax—Maximum curing degree gradient value; T(t)—Temperature curve; αA, αB, αC, αD, αE—Degree of cure at points A, B, C, D, and E

    图  11  T800/X850复合材料温度、固化度仿真与实验结果对比

    Figure  11.  Comparison between simulation and experimental results of temperature and curing degree of T800/X850 composite

    αexp—Experimental curing degree; Texp—Experimental Temperture; β—Heating rate

    表  1  T800碳纤维/X850环氧树脂预浸料的材料属性[16-18]

    Table  1.   Material properties of T800 carbon fiber/X850 epoxy resin prepregs[16-18]

    ParameterValue
    Relative dielectric constant65-20j
    Relative permeability1
    Conductivity (CX, CY, CZ)/(s·m−1)8696.45, 52.3, 52.3
    Thermal conductivity in parallel fiber direction/(W·(m·K)−1)−0.8863+0.0109T+0.2503α−0.3318e−5T2−0.0286α2
    Thermal conductivity in vertical fiber direction/(W·(m·K)−1)−0.5178+0.0055T+0.0784α−4.5880e−6T2−0.0663α2
    Density/(kg·m−3)1570
    Constant pressure heat capacity/(J·(kg·K)−1)−401.7+5.9T+135.1α−4.8723e−3T2
    Surface emissivity1
    Fiber volume fraction0.65
    Resin volume fraction0.35
    Notes: j—Imaginary part of the relative dielectric constant; CX, CY and CZ—Conductivity in different directions; T—Instantaneous temperature of T800/X850 composites; α—Instantaneous curing degree of T800/X850 composites.
    下载: 导出CSV

    表  2  T800/X850复合材料微波固化工艺数据

    Table  2.   Microwave curing process data of T800/X850 composites

    Pin/WMaximum curing gradient/%t/s
    200 5.9 3600
    500 14.5 2000
    1000 21.0 1500
    1500 21.5 1200
    2000 25.0 1000
    下载: 导出CSV
  • [1] HASSANA M R, GANJEHB B. Application of microwave heating in acrospace composite processing[J]. Applied Mechanics and Materials,2014,564:310-314. doi: 10.4028/www.scientific.net/AMM.564.310
    [2] 李树健, 湛利华, 白海明, 等. 基于树脂流动的变截面复合材料结构固化过程热-流-固多场强耦合数值仿真[J]. 复合材料学报, 2018, 35(8):2095-2102.

    LI Shujian, ZHAN Lihua, BAI Haiming, et al. Numerical simulation of thermal fluid solid multi field coupling in curing process of variable cross-section composite structure based on resin flow[J]. Acta Materiae Compositae Sinica,2018,35(8):2095-2102(in Chinese).
    [3] LI Y G, LI N Y, ZHOU J, et al. Microwave curing of multidirectional carbon fiber reinforced polymer composites[J]. Composite Structures,2019,212:83-93. doi: 10.1016/j.compstruct.2019.01.027
    [4] ZHOU J, LI Y G, LI D, et al. Online learning based intelligent temperature control during polymer composites microwave curing process[J]. Chemical Engineering Journal,2019,370:455-465. doi: 10.1016/j.cej.2019.03.204
    [5] 李自强, 湛利华, 常腾飞, 等. 基于微波固化工艺的碳纤维T800/环氧树脂复合材料固化反应动力学[J]. 复合材料学报, 2018, 35(9):2458-2464.

    LI Ziqiang, ZHAN Lihua, CHANG Tengfei, et al. Curing reaction kinetics of carbon fiber T800/epoxy resin composites based on microwave curing process[J]. Acta Materiae Compositae Sinica,2018,35(9):2458-2464(in Chinese).
    [6] BOGETTI T A, GILLESPIE J W. Two-dimensional cure simulation of thick thermosetting composites[J]. Journal of Composite Materials,1991,25(3):239-273. doi: 10.1177/002199839102500302
    [7] KIM Y K, WHITE S R. Viscoelastic analysis of processing-induced residual stresses in thick composite iaminates[J]. Mechanics of Composite Materials and Structures,2007,4(4):361-387.
    [8] HOSSEINI T H, SADIGHI M, VOJDANI A. Effects of curing thermal residual stresses on fatigue crack propagation of aluminum plates repaired by FML patches[J]. Composite Structures,2013,100:154-162. doi: 10.1016/j.compstruct.2012.12.052
    [9] VAUTARD F, OZCAN S, POLAND L, et al. Influence of thermal history on the mechanical properties of carbonfiber-acrylate composites cured by electron beam and thermal processes[J]. Composites Part A: Applied Science and Manufacturing,2012,45:162-172.
    [10] ZHOU J, LI Y G, ZHU Z X, et al. Microwave heating and curing of metal-like CFRP laminates through ultrathin and flexible resonance structures[J]. Composites Science and Technology,2021,218:109-200.
    [11] BHUDOLIA S K, GOHEL G, JOSHI S C, et al. Vibration damping and dynamic mechanical attributes of core-shell particles modified glass epoxy prepregs cured using microwave irradiations[J]. Composites Communications,2020,21:100412. doi: 10.1016/j.coco.2020.100412
    [12] 袁铁军, 周来水, 郑伟峰, 等. 微波固化成型三维中空复合材料结构的力学性能[J]. 玻璃钢/复合材料, 2017, 278(3):53-59.

    YUAN Tiejun, ZHOU Laishui, ZHENG Weifeng, et al. Mechanical properties of three-dimensional hollow composite structures formed by microwave curing[J]. Composites Science and Engineering,2017,278(3):53-59(in Chinese).
    [13] 徐学宏, 王小群, 闫超, 等. 环氧树脂及其复合材料微波固化研究进展[J]. 材料工程, 2016, 44(8):111-120. doi: 10.11868/j.issn.1001-4381.2016.08.018

    XU Xuehong, WANG Xiaoqun, YAN Chao, et al. Research progress of microwave curing of epoxy resin and its composites[J]. Journal of Materials Engineering,2016,44(8):111-120(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.08.018
    [14] LOOS A C, SPRINGERG S. Curing of epoxy matrix composites[J]. Journal of Composite Materials,1983,17(2):135-169. doi: 10.1177/002199838301700204
    [15] BOEY F Y C, SONG X L, YUE C Y, et al. Modeling the curing kinetics for a modified bismaleimide resin[J]. Journal of Polymer Science,2000,38:907-913.
    [16] 朱攀星, 杨绍昌. X850树脂预浸料材料工艺性研究[J]. 科技展望, 2016, 26(24):70-72. doi: 10.3969/j.issn.1672-8289.2016.24.063

    ZHU Panxing, YANG Shaochang. Study on the processability of X850 resin prepreg[J]. Science and Technology,2016,26(24):70-72(in Chinese). doi: 10.3969/j.issn.1672-8289.2016.24.063
    [17] 李伟东, 张金栋, 刘刚, 等. 国产T800碳纤维/双马来酰亚胺复合材料的界面及力学性能[J]. 复合材料学报, 2016, 33(7):1484-1491.

    LI Weidong, ZHANG Jindong, LIU Gang, et al. Interface and mechanical properties of domestic T800 carbon fiber/bismaleimide composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1484-1491(in Chinese).
    [18] 陈伟明, 王成忠, 周同悦, 等. T800碳纤维复合材料界面吸湿性能分析[J]. 玻璃钢/复合材料, 2006(5):20-23, 27.

    CHEN Weiming, WANG Chengzhong, ZHOU Tongyue, et al. Analysis of interfacial hygroscopic properties of T800 carbon fiber composites[J]. Composites Science and Engineering,2006(5):20-23, 27(in Chinese).
    [19] HAHN D W, OZISIK M N. Heat conduction[M]. 3rd Edition. New Jersey: John Wiley & Sons, Inc., 2012: 41-59.
    [20] CREYSSELS M. Model for thermal convection with uniform volumetric energy sources[J]. Journal of Fluid Mechanics,2021,919:1-18.
    [21] AHMED S E, RAIZAH Z A S. Analysis of the entropy due to radiative flow of nano-encapsulated phasechange materials within inclined porous prismatic enclosures finite element simulation[J]. Journal of Energy Storage,2021,40:102719. doi: 10.1016/j.est.2021.102719
    [22] ZONGA L, KEMOELB L C, HAWLEYA M C. Dielectric studies of three epoxy resin systems during microwave cure[J]. Polymer,2005,46(8):2638-2645. doi: 10.1016/j.polymer.2005.01.083
    [23] CHENG J, WANG B Y, XU D Z, et al. Resistive loss considerations in the finite element analysis of eddy current[J]. NDT and E International,2021,119:102403. doi: 10.1016/j.ndteint.2021.102403
    [24] 徐笑娟, 罗进, 陈兆权, 等. 考虑层间界面导电行为和电阻损耗的碳纤维增强树脂基复合材料结构电磁场扩散与衰减特性[J]. 复合材料学报, 2022, 39(10):5008-5019.

    XU Xiaojuan, LUO Jin, CHEN Zhaoquan, et al. Electromagnetic field diffusion and attenuation characteristics of carbon fiber reinforced resin matrix composites considering interlayer interface conductive behavior and resistance loss[J]. Acta Materiae Compositae Sinica,2022,39(10):5008-5019(in Chinese).
    [25] LINK G, RAMOPOULOS V. Simple analytical approach for industrial microwave applicator design[J]. Chemical Engineering and Processing: Process Intensification,2018,125:334-342.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1140
  • HTML全文浏览量:  439
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 修回日期:  2022-03-28
  • 录用日期:  2022-04-10
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回