留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺旋缠绕挤压肋FRP筋与混凝土间的粘结性能

董恒磊 李东风 王代玉

董恒磊, 李东风, 王代玉. 螺旋缠绕挤压肋FRP筋与混凝土间的粘结性能[J]. 复合材料学报, 2022, 39(11): 5239-5250. doi: 10.13801/j.cnki.fhclxb.20220419.001
引用本文: 董恒磊, 李东风, 王代玉. 螺旋缠绕挤压肋FRP筋与混凝土间的粘结性能[J]. 复合材料学报, 2022, 39(11): 5239-5250. doi: 10.13801/j.cnki.fhclxb.20220419.001
DONG Henglei, LI Dongfeng, WANG Daiyu. Bond behavior between helically and tightly wound FRP bars and concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5239-5250. doi: 10.13801/j.cnki.fhclxb.20220419.001
Citation: DONG Henglei, LI Dongfeng, WANG Daiyu. Bond behavior between helically and tightly wound FRP bars and concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5239-5250. doi: 10.13801/j.cnki.fhclxb.20220419.001

螺旋缠绕挤压肋FRP筋与混凝土间的粘结性能

doi: 10.13801/j.cnki.fhclxb.20220419.001
基金项目: 国家自然科学基金面上项目(51878224)
详细信息
    通讯作者:

    董恒磊,博士,工程师,研究方向为FRP在土木工程中的应用 E-mail: hengleidong@foxmail.com

  • 中图分类号: TB332

Bond behavior between helically and tightly wound FRP bars and concrete

  • 摘要: 纤维增强树脂复合材料(Fiber-reinforced polymer,FRP)筋的粘结性能是影响FRP筋混凝土构件力学性能的关键性因素,而目前有关带肋FRP筋表面处理工艺、几何特征等因素对粘结性能影响的研究还不足,当前主要设计规范也缺乏此方面的规定。本文以螺旋缠绕挤压肋FRP筋(简称螺旋肋FRP筋)为研究对象,通过搜集大量粘结性能试验数据,分析各主要研究变量对粘结损伤模式和粘结强度的影响规律,重点关注筋表面几何特征造成的影响,明确了螺旋肋FRP筋的粘结机制。结果表明,增大混凝土强度使粘结破坏的薄弱区域逐渐从筋与混凝土间咬合层的界面1(混凝土损伤为主)转移到界面2(纤维树脂损伤为主),同时粘结强度也增大,并且混凝土肋宽比CLR越大,增加混凝土强度对粘结强度的提升越明显;增大相对肋高hrd和混凝土肋宽比CLR导致筋与混凝土间咬合层的损伤程度加大,二者的机械咬合作用增强,粘结强度也相应增加;采用多元非线性回归的方式提出了适用于螺旋肋FRP筋的粘结强度计算公式,其预测结果与试验吻合较好,预测精度远高于目前的主流设计规范,究其根本原因在于本文所提公式准确考虑了FRP筋表面几何特征对粘结强度的影响规律。

     

  • 图  1  螺旋缠绕挤压肋纤维增强树脂复合材料(FRP)筋的几何特征

    Figure  1.  Geometrical features of helically and tightly wound fiber-reinforced polymer (FRP) bar

    sr—Rib spacing; wr—FRP bar rib width; wc—Concrete rib width; hr—Rib height

    图  2  螺旋肋FRP筋与混凝土的粘结机制

    Figure  2.  Bond mechanism of helically wound FRP bars in concrete

    图  3  混凝土抗压强度和FRP筋表面几何特征对粘结破坏模式的影响

    Figure  3.  Effect of concrete compressive strength and surface geometrical features of FRP bars on the bond failure

    GFRP—Glass fiber-reinforced polymer; BFRP—Basalt fiber-reinforced polymer

    图  4  混凝土抗压强度对FRP筋粘结强度的影响

    Figure  4.  Effect of concrete compressive strength on bond strength of FRP bars

    图  5  FRP筋表面几何特征对粘结强度的影响

    Figure  5.  Effect of surface geometrical features on bond strength of FRP bars

    图  6  FRP筋直径和粘结长度对破坏模式的影响

    Figure  6.  Effect of FRP bar diameter and embedment length on the bond failure of FRP bars

    图  7  螺旋肋FRP筋与混凝土在横向上的受力分析

    Figure  7.  Force analysis in transverse direction for helically wound FRP bars and concrete

    Cross section for Fig.2

    图  8  FRP筋直径及粘结长度对粘结强度的影响

    Figure  8.  Effect of bar diameter and embedment length on bond strength of FRP bars

    图  9  FRP筋粘结强度试验值与不同模型公式预测值的对比

    Figure  9.  Comparison of experimental bond strength for FRP bars to predicted values from different equations

    RMSE—Root mean square error; R2—Determination coefficient

    表  1  螺旋肋FRP筋粘结性能试验主要结果汇总

    Table  1.   Summary of main results from bond tests of helically wound FRP bars

    SourceSpecimenfc0/
    MPa
    Fiber/
    Resin*
    Ef/
    GPa
    ff/
    MPa
    db/
    mm
    lb/dbc/dbhrd/%wr/
    mm
    wc/
    mm
    CLRτm/
    MPa
    Failure mode
    Hao et al[25] 8-4-6 28.7 Glass fiber (72%)

    Polyester (28%)
    41 710 8 4 8.88 6.00 3.0 1.0 0.25 13.47 P
    8-8-6 28.7 41 710 8 4 8.88 6.00 7.0 1.0 0.13 14.58 P
    8-12-6 28.7 41 710 8 4 8.88 6.00 11.0 1.0 0.08 13.40 P
    8-16-6 28.7 41 710 8 4 8.88 6.00 15.0 1.0 0.06 12.87 P
    8-20-6 28.7 41 710 8 4 8.88 6.00 19.0 1.0 0.05 11.63 P
    8-24-6 28.7 41 710 8 4 8.88 6.00 23.0 1.0 0.04 11.22 P
    8-8-4 28.7 41 710 8 4 8.88 4.00 7.0 1.0 0.13 12.51 P
    8-8-5 28.7 41 710 8 4 8.88 5.00 7.0 1.0 0.13 13.37 P
    8-8-7 28.7 41 710 8 4 8.88 7.00 7.0 1.0 0.13 12.43 P
    8-8-8 28.7 41 710 8 4 8.88 8.00 7.0 1.0 0.13 13.68 P
    8-8-9 28.7 41 710 8 4 8.88 9.00 7.0 1.0 0.13 11.49 P
    10-5-6 28.7 41 710 10 4 7.00 6.00 4.0 1.0 0.20 13.17 P
    10-10-6 28.7 41 710 10 4 7.00 6.00 9.0 1.0 0.10 13.96 P
    10-15-6 28.7 41 710 10 4 7.00 6.00 14.0 1.0 0.07 13.22 P
    10-20-6 28.7 41 710 10 4 7.00 6.00 19.0 1.0 0.05 10.66 P
    10-25-6 28.7 41 710 10 4 7.00 6.00 24.0 1.0 0.04 10.46 P
    10-30-6 28.7 41 710 10 4 7.00 6.00 29.0 1.0 0.03 10.64 P
    10-10-4 28.7 41 710 10 4 7.00 4.00 9.0 1.0 0.10 11.74 P
    10-10-5 28.7 41 710 10 4 7.00 5.00 9.0 1.0 0.10 13.42 P
    10-10-7 28.7 41 710 10 4 7.00 7.00 9.0 1.0 0.10 13.62 P
    10-10-8 28.7 41 710 10 4 7.00 8.00 9.0 1.0 0.10 10.26 P
    10-10-9 28.7 41 710 10 4 7.00 9.00 9.0 1.0 0.10 12.83 P
    12-6-5 28.7 41 710 12 4 5.75 5.00 5.0 1.0 0.17 9.23 P
    12-12-5 28.7 41 710 12 4 5.75 5.00 11.0 1.0 0.08 11.61 P
    12-18-5 28.7 41 710 12 4 5.75 5.00 17.0 1.0 0.06 10.83 P
    12-24-5 28.7 41 710 12 4 5.75 5.00 23.0 1.0 0.04 9.39 P
    12-12-3 28.7 41 710 12 4 5.75 3.00 11.0 1.0 0.08 8.07 P
    12-12-4 28.7 41 710 12 4 5.75 4.00 11.0 1.0 0.08 10.83 P
    12-12-6 28.7 41 710 12 4 5.75 6.00 11.0 1.0 0.08 12.99 P
    12-12-7 28.7 41 710 12 4 5.75 7.00 11.0 1.0 0.08 10.06 P
    Baena et al[26] R6-8-C1-1 29.34 Glass fiber

    Polyester
    46 689 7.07 5 13.64 19.52 14.80 3.60 0.20 19.12 P
    Baena et al[26] R6-8-C1-2 29.34 Glass fiber

    Polyester
    46 689 7.07 5 13.64 19.52 14.80 3.60 0.20 14.85 P
    R6-12-C1-1 30.00 46 689 12.35 5 7.60 8.83 12.40 3.60 0.22 15.83 P
    R6-12-C1-2 29.34 46 689 12.35 5 7.60 8.83 12.40 3.60 0.22 17.45 P
    R6-8-C2-1 47.89 46 689 7.07 5 13.64 19.52 14.80 3.60 0.20 29.67 P
    R6-8-C2-2 46.15 46 689 7.07 5 13.64 19.52 14.80 3.60 0.20 26.25 P
    R6-12-C2-1 47.89 46 689 12.35 5 7.60 8.83 12.40 3.60 0.22 24.67 P
    R6-12-C2-2 47.89 46 689 12.35 5 7.60 8.83 12.40 3.60 0.22 27.16 P
    R6-16-C2-1 46.15 46 689 17.36 5 5.26 4.84 12.50 3.60 0.22 19.55 S
    R6-16-C2-2 47.89 46 689 17.36 5 5.26 4.84 12.50 3.60 0.22 21.63 S
    R6-19-C2-1 46.15 46 689 21.25 5 4.21 4.85 12.80 3.60 0.22 17.16 S
    R6-19-C2-2 46.15 46 689 21.25 5 4.21 4.85 12.80 3.60 0.22 15.95 S
    R6-16-C2 47.89 46 689 17.36 5 5.26 5.76 13.26 2.87 0.18 21.58 S
    R6-19-C2 46.15 46 689 21.25 5 4.21 4.71 13.50 2.92 0.18 17.14 S
    Solyom et al[20] R11-8-C1-1 28.264 Basalt fiber

    Vinyl ester
    66.0 1736 8 5 8.88 8.25 2.81 1.75 0.38 24.52 P
    R11-8-C1-2 28.264 66.0 1736 8 5 8.88 8.25 2.81 1.75 0.38 21.09 P
    R11-8-C1-3 28.264 66.0 1736 8 5 8.88 8.25 2.81 1.75 0.38 25.03 P
    R11-8-C1-4 28.264 66.0 1736 8 5 8.88 8.25 2.81 1.75 0.38 23.83 P
    R12-12-C1-1 28.264 Glass fiber

    Vinyl ester
    42.5 1000 12 5 5.75 3.83 4.12 1.78 0.30 15.88 P
    R12-12-C1-2 28.264 42.5 1000 12 5 5.75 3.83 4.12 1.78 0.30 13.28 P
    R12-12-C1-3 28.264 42.5 1000 12 5 5.75 3.83 4.12 1.78 0.30 16.25 P
    R12-12-C1-4 28.264 42.5 1000 12 5 5.75 3.83 4.12 1.78 0.30 15.11 P
    R12-12-C2-1 52.880 42.5 1000 12 5 5.75 3.83 4.12 1.78 0.30 23.96 P
    R12-12-C2-2 52.880 42.5 1000 12 5 5.75 3.83 4.12 1.78 0.30 30.95 P
    R12-12-C2-3 52.880 42.5 1000 12 5 5.75 3.83 4.12 1.78 0.30 28.04 P
    R12-12-C2-4 52.880 42.5 1000 12 5 5.75 3.83 4.12 1.78 0.30 30.50 P
    R13-12-C1-1 28.264 42.5 1000 12 5 5.75 4.33 6.08 1.25 0.17 15.29 P
    R13-12-C1-2 28.264 42.5 1000 12 5 5.75 4.33 6.08 1.25 0.17 15.21 P
    R13-12-C1-3 28.264 42.5 1000 12 5 5.75 4.33 6.08 1.25 0.17 15.01 P
    R13-12-C1-4 28.264 42.5 1000 12 5 5.75 4.33 6.08 1.25 0.17 16.02 P
    R13-12-C2-1 52.880 42.5 1000 12 5 5.75 4.33 6.08 1.25 0.17 18.23 P
    R13-12-C2-2 52.880 42.5 1000 12 5 5.75 4.33 6.08 1.25 0.17 18.38 P
    R13-12-C2-3 52.880 42.5 1000 12 5 5.75 4.33 6.08 1.25 0.17 18.77 P
    R13-12-C2-4 52.880 42.5 1000 12 5 5.75 4.33 6.08 1.25 0.17 16.98 P
    Fahmy et al[27] FWn10-1 46.8 Basalt fiber (60%)

    Epoxy (30%)
    55 1100 10 5 7.00 6.00 7.0 3.0 0.30 20.37 P
    FWn10-2 46.8 55 1100 10 5 7.00 6.00 7.0 3.0 0.30 21.47 P
    FWn10-3 46.8 55 1100 10 5 7.00 6.00 7.0 3.0 0.30 20.08 P
    Fahmy et al[27] FWn10-4 46.8 Basalt fiber (60%)

    Epoxy (30%)
    55 1100 10 5 7.00 6.00 7.0 3.0 0.30 21.07 S
    FWn10-5 35.1 55 1100 10 5 7.00 6.00 7.0 3.0 0.30 19.30 P
    FWn10-6 35.1 55 1100 10 5 7.00 6.00 7.0 3.0 0.30 19.00 P
    FWn10-7 35.1 55 1100 10 5 7.00 6.00 7.0 3.0 0.30 19.87 P
    FWn10-8 35.1 55 1100 10 5 7.00 6.00 7.0 3.0 0.30 18.09 S
    FWn12-1 35.1 55 1100 12 5 5.75 5.83 8.6 3.4 0.28 21.13 P
    FWn12-2 35.1 55 1100 12 5 5.75 5.83 8.6 3.4 0.28 19.56 P
    FWn16-1 35.1 55 1100 16 5 4.19 6.00 12.6 3.4 0.21 11.69 S
    FWn16-2 35.1 55 1100 16 5 4.19 6.00 12.6 3.4 0.21 12.08 S
    Wang et al[28] B1-55-0-1 36.08 Carbon fiber (65%)

    Vinyl ester (35%)
    152 1 970 10 5.5 7.00 6.00 7.6 2.8 0.27 24.72 P
    B1-55-0-2 36.08 152 1 970 10 5.5 7.00 6.00 7.6 2.8 0.27 25.71 P
    B1-55-0-3 36.08 152 1 970 10 5.5 7.00 6.00 7.6 2.8 0.27 23.62 P
    B1-110-0-1 36.08 152 1 970 10 11.0 7.00 6.00 7.6 2.8 0.27 22.57 P
    B1-110-0-2 36.08 152 1 970 10 11.0 7.00 6.00 7.6 2.8 0.27 21.65 P
    B1-110-0-3 36.08 152 1 970 10 11.0 7.00 6.00 7.6 2.8 0.27 21.67 P
    Zhang et al[29] L5-R0-1 39.58 Carbon fiber (65%)

    Vinyl ester (35%)
    153.3 1939.7 10 5 7.00 6.00 7.12 2.6 0.27 18.53 P
    L5-R0-2 39.58 153.3 1939.7 10 5 7.00 6.00 7.12 2.6 0.27 19.60 P
    L5-R0-3 39.58 153.3 1939.7 10 5 7.00 6.00 7.12 2.6 0.27 21.37 P
    L7-R0-1 39.58 153.3 1939.7 10 7 7.00 6.00 7.12 2.6 0.27 18.03 P
    Zhang et al[29] L7-R0-2 39.58 Carbon fiber (65%)

    Vinyl ester (35%)
    153.3 1939.7 10 7 7.00 6.00 7.12 2.6 0.27 20.71 P
    L7-R0-3 39.58 153.3 1939.7 10 7 7.00 6.00 7.12 2.6 0.27 20.23 P
    L10-R0-1 39.58 153.3 1939.7 10 10 7.00 6.00 7.12 2.6 0.27 18.99 P
    L10-R0-2 39.58 153.3 1939.7 10 10 7.00 6.00 7.12 2.6 0.27 18.33 P
    L10-R0-3 39.58 153.3 1939.7 10 10 7.00 6.00 7.12 2.6 0.27 17.58 P
    Basaran et al[18] G12 Ww/4.5-11-4.5-10-1/C30 29.14 Glass fiber 12 10 4.54 5.0 6.3 1 0.14 11.42 P
    Shan et al[30] CR8-20 NL-1 31.04 Carbon fiber 150 1800 8 2.5 8.88 5.00 7 1 0.125 14.80 P
    CR8-20 NL-2 31.04 150 1800 8 2.5 8.88 5.00 7 1 0.125 15.90 P
    CR8-20 NL-3 31.04 150 1800 8 2.5 8.88 5.00 7 1 0.125 13.50 P
    CR8-40 NL-1 31.04 150 1800 8 5.0 8.88 5.00 7 1 0.125 12.70 P
    CR8-40 NL-2 31.04 150 1800 8 5.0 8.88 5.00 7 1 0.125 11.50 P
    CR8-40 NL-3 31.04 150 1800 8 5.0 8.88 5.00 7 1 0.125 10.90 P
    CR8-60 NL-1 31.36 150 1800 8 7.5 8.88 5.00 7 1 0.125 10.50 P
    CR8-60 NL-2 31.36 150 1800 8 7.5 8.88 5.00 7 1 0.125 9.60 P
    CR8-60 NL-3 31.36 150 1800 8 7.5 8.88 5.00 7 1 0.125 10.30 P
    CR8-80 NL-1 31.36 150 1800 8 10.0 8.88 5.00 7 1 0.125 10.20 P
    CR8-80 NL-2 31.36 150 1800 8 10.0 8.88 5.00 7 1 0.125 8.30 P
    CR8-80 NL-3 31.36 150 1800 8 10.0 8.88 5.00 7 1 0.125 9.40 P
    Notes:Details of specimen symbols can be obtained in source references, * percent in bracket stands for fiber or resin content by volume; Ef, ff—Elastic modulus and ultimate tensile strength of FRP bars; fc0—Concrete compressive strength; db—Bar diameter; lb—Embedment length; c—Concrete cover; wr—FRP bar rib width; wc—Concrete rib width; hrd—Ratio of rib height to bar diameter; CLR—Concrete lug ratio; τm—Bond strength; P, S—Pullout and splitting failure.
    下载: 导出CSV
  • [1] 牛荻涛. 混凝土结构耐久性与寿命预测[M]. 北京: 科学出版社, 2003.

    NIU Ditao. Durability and life prediction of concrete structures[M]. Beijing: Science Press, 2003(in Chinese).
    [2] 张伟平, 顾祥林, 金贤玉, 等. 混凝土中钢筋锈蚀机理及锈蚀钢筋力学性能研究[J]. 建筑结构学报, 2010, 31(S1):327-332.

    ZHANG Weiping, GU Xianglin, JIN Xianyu, et al. Study on corrosion mechanism of steel bars in concrete and mecha-nical performance of corroded steel bars[J]. Journal of Building Structures,2010,31(S1):327-332(in Chinese).
    [3] 冯鹏, 王杰, 张枭, 等. FRP与海砂混凝土组合应用的发展与创新[J]. 玻璃钢/复合材料, 2014(12):13-18.

    FENG Peng, WANG Jie, ZHANG Xiao, et al. Development and innovation application of FRP and sea-sand concrete structures[J]. GFRP/Composite materials,2014(12):13-18(in Chinese).
    [4] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2005(12):1-11. doi: 10.3321/j.issn:1000-131X.2005.12.001

    TENG Jinguang. FRP reinforced concrete structures[J]. Beijing: China Building Industry Press,2005(12):1-11(in Chinese). doi: 10.3321/j.issn:1000-131X.2005.12.001
    [5] NEPOMUCENO E, SENA-CRUZ J, CORREIA L, et al. Review on the bond behavior and durability of FRP bars to concrete[J]. Construction and Building Materials,2021,287:123042. doi: 10.1016/j.conbuildmat.2021.123042
    [6] YAN F, LIN Z, YANG M. Bond mechanism and bond strength of GFRP bars to concrete: A review[J]. Compo-sites Part B: Engineering,2016,98:56-69. doi: 10.1016/j.compositesb.2016.04.068
    [7] COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of Composites for Construction,1997,1(2):40-51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40)
    [8] ROSSETTI V A, GALEOTA D, GIAMMATTEO M M. Local bond stress-slip relationships of glass fibre reinforced plastic bars embedded in concrete[J]. Materials and Structures,1995,28(6):340-344. doi: 10.1007/BF02473149
    [9] ACHILLIDES Z, PILAKOUTAS K. Bond behavior of fiber reinforced polymer bars under direct pullout conditions[J]. Journal of Composites for Construction,2004,8(2):173-181. doi: 10.1061/(ASCE)1090-0268(2004)8:2(173)
    [10] ROLLAND A, QUIERTANT M, KHADOUR A, et al. Experimental investigations on the bond behavior between concrete and FRP reinforcing bars[J]. Construction and Building Materials,2018,173:136-148. doi: 10.1016/j.conbuildmat.2018.03.169
    [11] El R A, AMMAR M, MASMOUDI R. Bond performance of basalt fiber-reinforced polymer bars to concrete[J]. Jour-nal of Composites for Construction,2015,19(3):4014050. doi: 10.1061/(ASCE)CC.1943-5614.0000487
    [12] LEE J Y, KIM T Y, KIM T J, et al. Interfacial bond strength of glass fiber reinforced polymer bars in high-strength concrete[J]. Composites Part B: Engineering,2008,39(2):258-270. doi: 10.1016/j.compositesb.2007.03.008
    [13] AL-MAHMOUD F, CASTEL A, FRANÇOIS R, et al. Effect of surface pre-conditioning on bond of carbon fibre reinforced polymer rods to concrete[J]. Cement and Concrete Composites,2007,29(9):677-689. doi: 10.1016/j.cemconcomp.2007.04.010
    [14] WON J, PARK C, KIM H, et al. Effect of fibers on the bonds between FRP reinforcing bars and high-strength concrete[J]. Composites Part B: Engineering,2008,39(5):747-755. doi: 10.1016/j.compositesb.2007.11.005
    [15] MAZAHERIPOUR H, BARROS J A O, SENA-CRUZ J M, et al. Experimental study on bond performance of GFRP bars in self-compacting steel fiber reinforced concrete[J]. Composite Structures,2013,95:202-212. doi: 10.1016/j.compstruct.2012.07.009
    [16] PARVIZI M, NOËL M, VASQUEZ J, et al. Assessing the bond strength of glass fiber reinforced polymer (GFRP) bars in portland cement concrete fabricated with seawater through pullout tests[J]. Construction and Building Materials,2020,263:120952. doi: 10.1016/j.conbuildmat.2020.120952
    [17] OKELO R, YUAN R L. Bond strength of fiber reinforced polymer rebars in normal strength concrete[J]. Journal of Composites for Construction,2005,9(3):203-213. doi: 10.1061/(ASCE)1090-0268(2005)9:3(203)
    [18] BASARAN B, KALKAN I. Investigation on variables affecting bond strength between FRP reinforcing bar and concrete by modified hinged beam tests[J]. Composite Structures,2020,242:112185. doi: 10.1016/j.compstruct.2020.112185
    [19] BASARAN B, KALKAN I. Development length and bond strength equations for FRP bars embedded in concrete[J]. Composite Structures,2020,251:112662. doi: 10.1016/j.compstruct.2020.112662
    [20] SOLYOM S, BALAZS G L. Bond of FRP bars with different surface characteristics[J]. Construction and Building Materials,2020,264:119839. doi: 10.1016/j.conbuildmat.2020.119839
    [21] SOLYOM S, BALAZS G L. Analytical and statistical study of the bond of FRP bars with different surface characteristics[J]. Composite Structures,2021,270:113953. doi: 10.1016/j.compstruct.2021.113953
    [22] Canadian Standards Association. Design and construction of building structures with fibre-reinforced polymers: CAN/CSA S806-12[S]. Toronto: Canadian Standards Association, 2012.
    [23] American Concrete Institute. Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer (FRP) bars: ACI 440.1 R-15[S]. Farmington Hills: American Concrete Institute, 2015.
    [24] WEI W, LIU F, XIONG Z, et al. Bond performance between fibre-reinforced polymer bars and concrete under pull-out tests[J]. Construction and Building Materials,2019,227:116803. doi: 10.1016/j.conbuildmat.2019.116803
    [25] HAO Q, WANG Y, HE Z, et al. Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete[J]. Construction and Building Materials,2009,23(2):865-871. doi: 10.1016/j.conbuildmat.2008.04.011
    [26] BAENA M, TORRES L, TURON A, et al. Experimental study of bond behaviour between concrete and FRP bars using a pull-out test[J]. Composites Part B: Engineering,2009,40(8):784-797. doi: 10.1016/j.compositesb.2009.07.003
    [27] FAHMY M, AHMED S, WU Z. Bar surface treatment effect on the bond-slip behavior and mechanism of basalt FRP bars embedded in concrete[J]. Construction and Building Materials,2021,289:122844. doi: 10.1016/j.conbuildmat.2021.122844
    [28] WANG Q, ZHU H, TONG Y, et al. Bond-slip behaviour of the CFRP ribbed bars anchored with the innovative additional ribs in concrete[J]. Composite Structures,2021,262:113595. doi: 10.1016/j.compstruct.2021.113595
    [29] ZHANG B, ZHU H, WU G, et al. Improvement of bond performance between concrete and CFRP bars with optimized additional aluminum ribs anchorage[J]. Construction and Building Materials,2020,241:118012. doi: 10.1016/j.conbuildmat.2020.118012
    [30] 单波, 佟广权, 刘其元. CFRP筋与海水海砂混凝土黏结性能试验[J]. 建筑科学与工程学报, 2020, 37(5):113-123.

    SHAN Bo, TONG Guangquan, LIU Qiyuan. Experiment on bond performance of CFRP bars in seawater and sea sand concrete[J]. Journal of Architecture and Civil Engineering,2020,37(5):113-123(in Chinese).
    [31] ALVES J, El-RAGABY A, El-SALAKAWY E. Durability of GFRP bars' bond to concrete under different loading and environmental conditions[J]. Journal of Composites for Construction,2011,15(3):249-262. doi: 10.1061/(ASCE)CC.1943-5614.0000161
    [32] Japan Society of Civil Engineers. Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials: JSCE 1997[S]. Tokyo: Japan Society of Civil Engineers, 1997.
    [33] Canadian Standards Association. Canadian highway bridge design code: CAN/CSA S6-06[S]. Toronto: Canadian Standards Association, 2006.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  808
  • HTML全文浏览量:  255
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 修回日期:  2022-03-25
  • 录用日期:  2022-04-03
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回