留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PLA基生物复材丝材熔融沉积成型中增强相在层间界面的分布状态

周政 谢明慧 王延庆

周政, 谢明慧, 王延庆. PLA基生物复材丝材熔融沉积成型中增强相在层间界面的分布状态[J]. 复合材料学报, 2023, 40(1): 407-418. doi: 10.13801/j.cnki.fhclxb.20220414.003
引用本文: 周政, 谢明慧, 王延庆. PLA基生物复材丝材熔融沉积成型中增强相在层间界面的分布状态[J]. 复合材料学报, 2023, 40(1): 407-418. doi: 10.13801/j.cnki.fhclxb.20220414.003
ZHOU Zheng, XIE Minghui, WANG Yanqing. Distribution state of reinforcement phase at the interface between layers in the fused deposition modeling of PLA based biocomposite filaments[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 407-418. doi: 10.13801/j.cnki.fhclxb.20220414.003
Citation: ZHOU Zheng, XIE Minghui, WANG Yanqing. Distribution state of reinforcement phase at the interface between layers in the fused deposition modeling of PLA based biocomposite filaments[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 407-418. doi: 10.13801/j.cnki.fhclxb.20220414.003

PLA基生物复材丝材熔融沉积成型中增强相在层间界面的分布状态

doi: 10.13801/j.cnki.fhclxb.20220414.003
基金项目: 中国矿业大学中央高校基本科研业务费专项资金(2020ZDPYMS36)
详细信息
    通讯作者:

    王延庆,博士,副教授,硕士生导师,研究方向为3D打印及树脂复合材料 E-mail:cumtwyq@163.com

  • 中图分类号: TB332

Distribution state of reinforcement phase at the interface between layers in the fused deposition modeling of PLA based biocomposite filaments

Funds: Fundamental Research Funds for the Central Universities of China University of Mining and Technology (2020ZDPYMS36)
  • 摘要: 通过熔融沉积成型3D打印的三维模型,不可避免存有层间界面,针对层间界面增强,本文采用超声浸渍法制备了纳米羟基磷灰石(n-HA)与微米短切碳纤维(CF)两相增强材料在聚乳酸(PLA)基体上牢固结合、均匀分布的PLA基生物复材丝材,该方法避免混炼的同时,也为层间界面储备了增强相。然而,经过熔融沉积成型3D打印之后,n-HA与微米短切CF两相增强材料在层间界面区域的分布状态尤为关键。运用Ansys进行流体数值计算,借助Minitab进行正交参数设计和信噪比数据分析,研究喷嘴直径、送丝速度、微米短切CF含量3个关键因素对于喷嘴出口流体速度的影响规律,并进一步通过熔融沉积成型3D打印机,在相同的打印参数设置下,制备标准拉伸试样,进行拉伸性能表征和SEM观察,研究PLA基生物复材丝材中,两相增强材料n-HA与微米短切CF在层间界面区域的分布状态。结果表明:借助Minitab信噪比优化实验参数,比正交试验参数设计手段更加有效;选取熔融温度为210℃、喷嘴直径为0.5 mm、送丝速度为14 mm·s−1、微米短切CF含量为7wt%,上述参数组合进行数值计算获得的喷嘴出口流体速度方差最大,为两相增强材料n-HA与微米短切CF在层间界面区域最均匀分布创造了积极有利条件,且试样拉伸性能最强。

     

  • 图  1  纳米羟基磷灰石(n-HA)的改性处理过程

    Figure  1.  Nano-hydroxyapatite (n-HA) modification process

    PLA—Poly(lactic acid); KH550—3-aminopropyltriethoxysilane

    图  2  微米短切碳纤维(CF)的改性处理过程

    Figure  2.  Micron chopped carbon fiber (CF) modification process

    图  3  聚乳酸(PLA)基生物复材丝材制备示意图

    Figure  3.  Schematic diagram of preparation of poly(lactic acid) (PLA) based biocomposite filament

    图  4  纯PLA丝材和PLA基生物复材丝材的SEM表面形貌图像

    Figure  4.  SEM surface morphology images of pure PLA filament and PLA based biocomposite filament

    图  5  PLA基生物复材丝材黏度随温度及剪切速率的变化曲线:(a) 丝材1 (5wt%n-HA、5wt%CF);(b) 丝材2 (5wt%n-HA、6wt%CF);(c) 丝材3 (5wt%n-HA、7wt%CF);(d) 丝材样品颗粒

    Figure  5.  Curves of viscosity of each PLA based biocomposite filament with temperature and shear rate: (a) Filament 1 (5wt%n-HA, 5wt%CF); (b) Filament 2 (5wt%n-HA, 6wt%CF); (c) Filament 3 (5wt%n-HA, 7wt%CF); (d) Filament sample particles

    图  6  熔融沉积成型原理图和丝材在熔腔内状态转化示意图

    Figure  6.  Schematic diagram of fused deposition modeling and the state transformation of filament in the melting chamber

    图  7  计算模型(a)和模型网格(b)划分

    Figure  7.  Calculation model (a) and model meshing (b)

    图  8  用PLA基生物复材丝材制备的13组标准试样的拉伸实验

    Figure  8.  Tensile test of thirteen groups of standard samples prepared with PLA based biocomposite filament

    图  9  PLA基生物复材的SEM试样的制备过程

    Figure  9.  Preparation process of SEM samples of PLA based biocomposite

    图  10  190℃下各参数试样的喷嘴出口流体速度采样点导出曲线

    Figure  10.  Derive curves of sampling point of nozzle outlet fluid velocity of samples with various parameters at 190℃

    图  11  190℃下各参数条件的1~9号试样增强相层间界面分布状态SEM图像

    Figure  11.  SEM images of the distribution state of the interlayer interface of the reinforced phase of the samples No. 1-9 under the conditions of various parameters at 190℃

    图  12  190℃下各参数条件的1~9号试样及0号对比试样的应力-应变曲线(a)和屈服强度值(b)

    Figure  12.  Stress-strain curves (a) and yield strength value (b) of No. 1-9 samples and No. 0 comparative samples under various parameter conditions at 190℃

    图  13  各温度下喷嘴出口流体速度信噪比数据均值:(a) 190℃;(b) 200℃;(c) 210℃;(d) 220℃

    Figure  13.  Mean value of the signal-to-noise ratio data of the nozzle outlet fluid velocity at various temperatures: (a) 190°C; (b) 200°C; (c) 210°C; (d) 220°C

    图  14  O1~O4号试样的喷嘴出口流体速度采样点导出曲线

    Figure  14.  Derived curves of the sampling point of the nozzle outlet fluid velocity of the O1-O4 samples

    图  15  O1~O4号试样增强相层间界面分布状态SEM图像

    Figure  15.  SEM images of the distribution state of the interlayer interface of the O1-O4 samples

    图  16  O1~O4号试样的应力-应变曲线(a)和屈服强度值(b)

    Figure  16.  Stress-strain curves (a) and yield strength value (b) of O1-O4 samples

    表  1  PLA基生物复材丝材流体的非牛顿指数n、黏度系数K及黏流活化能Eη

    Table  1.   Non-Newtonian index n, viscosity coefficient K and viscous activation energy Eη of PLA based biocomposite filament fluid

    ParameterSpecial composite filament fluidTemperature
    190℃200℃210℃220℃
    n Filament 1 0.5851 0.8112 0.8301 0.7941
    Filament 2 0.8270 0.9738 0.7269 0.8014
    Filament 3 0.7311 0.9076 0.9410 0.8374
    K Filament 1 6177.7537 886.2242 518.6348 556.9971
    Filament 2 1141.5702 257.8248 1250.9768 529.5619
    Filament 3 2032.3946 394.0824 219.7433 348.3055
    Eη/(kJ·mol−1) Filament 1 69458.0590
    Filament 2 73876.8404
    Filament 3 68175.0905
    下载: 导出CSV

    表  2  喷嘴出口速度影响因素的正交参数方案

    Table  2.   Orthogonal parameter scheme for influencing factors of nozzle outlet velocity

    Test numberNozzle
    diameter/mm
    Filament feding
    speed/(mm·s−1)
    Micron chopped CF
    content/wt%
    1 0.4 2 5
    2 0.4 8 6
    3 0.4 14 7
    4 0.5 2 6
    5 0.5 8 7
    6 0.5 14 5
    7 0.6 2 7
    8 0.6 8 5
    9 0.6 14 6
    下载: 导出CSV

    表  3  计算模型各部分材料的主要物理属性

    Table  3.   Calculate the main physical properties of the materials in each part of the model

    MaterialsThermal conductivity/
    (W·m−1·℃−1)
    Thermal expansivity/
    (10−5 K−1)
    Density/
    (kg·m−3)
    Specific heat capacity/
    (kJ·kg−1·℃−1)
    Size
    PLA 0.23 0.20 1250 2.040 60 nm
    n-HA 1.20 0.80 3160 0.840 60 nm
    Micron chopped CF 500.00 0.00 1750 7.120 100 μm
    Brass 387.60 2.00 8978 0.381
    Aluminum alloy 202.40 2.32 2719 0.871
    下载: 导出CSV

    表  4  190℃下的喷嘴出口流体速度均值、速度方差、Delta值汇总表

    Table  4.   Summary of the mean value, velocity variance, and Delta value of the nozzle outlet fluid velocity at 190℃

    Test numberFactorsMean value of fluid
    velocity at nozzle outlet/
    (10−2 m·s−1)
    Variance of fluid velocity at nozzle outlet/(10−3 m·s−1)
    Nozzle diameter/mmFilament feeding
    speed/(mm·s−1)
    Micron chopped
    CF content/wt%
    1 0.4 2 5 5.89 0.413
    2 0.4 8 6 23.81 6.139
    3 0.4 14 7 41.11 16.565
    4 0.5 2 6 5.81 0.479
    5 0.5 8 7 22.83 6.616
    6 0.5 14 5 38.82 15.979
    7 0.6 2 7 2.84 0.086
    8 0.6 8 5 10.82 1.041
    9 0.6 14 6 19.23 3.554
    Delta 4.33 7.70 0.49
    Rank 2 1 3
    下载: 导出CSV

    表  5  喷嘴出口流体速度信噪比数据均值优化结果表

    Table  5.   Optimization results of the mean value of the signal-to-noise ratio data of the fluid velocity at the nozzle outlet

    Test numberTempera-
    ture/℃
    Factors
    Nozzle diameter/
    mm
    Filament feeding
    speed/
    (mm·s−1)
    Micron chopped
    CF content/wt%
    O11900.5146
    O22000.5147
    O32100.5147
    O42200.5147
    下载: 导出CSV

    表  6  O1~O4号试样喷嘴出口流体速度均值和方差表

    Table  6.   Mean value and variance of the fluid velocity at the nozzle exit of the O1-O4 samples

    VelocityTest number
    O1O2O3O4
    Mean value of fluid
    velocity at nozzle outlet/
    (10−2 m·s−1)
    41.6342.5742.8241.81
    Variance of fluid
    velocity at nozzle
    outlet/(10−3 m·s−1)
    22.08624.83625.22223.171
    下载: 导出CSV
  • [1] 薛成龙, 王守仁, 王高琦, 等. 碳纤维增强聚醚醚酮复合材料骨诱导修复植入体制备及微动摩擦学性能[J]. 复合材料学报, 2022, 39(7):3212-3223. doi: 10.13801/j.cnki.fhclxb.20210911.001

    XUE Chenglong, WANG Shouren, WANG Gaoqi, et al. Preparation and fretting tribological properties of carbon fiber reinforced polyetheretherketone composite osteoinductive repair implants[J]. Acta Materiae Compositae Sinica,2022,39(7):3212-3223(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210911.001
    [2] LIANG C, LIU G, LIANG G, et al. Healing pattern classification for thoracolumbar burst fractures after posterior short-segment fixation[J]. BMC Musculoskeletal Disorders,2020,21(1):1-10. doi: 10.1186/s12891-020-03386-z
    [3] WEI X, LIU P D, MA S J, et al. Improvement on corrosion resistance and biocompability of ZK60 magnesium alloy by carboxyl ion implantation[J]. Corrosion Science,2020,173:108729. doi: 10.1016/j.corsci.2020.108729
    [4] MANSOUR A, NADA L A, EI-HADAD A A, et al. Biomimetic trace metals improve bone regenerative properties of calcium phosphate bioceramics[J]. Journal of Biomedical Materials Research Part A,2021,109(5):666-681. doi: 10.1002/jbm.a.37051
    [5] 禹宝庆, 施继飞, 敖荣广, 等. 生物降解高分子材料在骨科的应用研究和展望[J]. 生物骨科材料与临床研究, 2018, 15(5):69-72, 75. doi: 10.3969/j.issn.1672-5972.2018.05.018

    YU Baoqing, SHI Jifei, AO Rongguang, et al. The application and development of biodegradable high polymer materials in orthopedics[J]. Orthopaedic Biomechanics Materials and Clinical Study,2018,15(5):69-72, 75(in Chinese). doi: 10.3969/j.issn.1672-5972.2018.05.018
    [6] ALI W, MEHBOOB A, HAN M G, et al. Effect of fluoride coating on degradation behaviour of unidirectional Mg/PLA biodegradable composite for load-bearing bone implant application[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105464. doi: 10.1016/j.compositesa.2019.05.032
    [7] 王宪朋, 刘阳, 王传栋, 等. 静电纺丝法制备小口径胶原-聚乳酸人工血管[J]. 复合材料学报, 2017, 34(11):2550-2555. doi: 10.13801/j.cnki.fhclxb.20170220.005

    WANG Xianpeng, LIU Yang, WANG Chuandong, et al. Preparation of small-diameter collagen-polylactic acid artificial blood vessel by electrospinning[J]. Acta Materiae Compositae Sinica,2017,34(11):2550-2555(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170220.005
    [8] 王震, 李敬洋, 张建超, 等. 熔融沉积制造材料的空间应用实验[J]. 宇航材料工艺, 2020, 50(2):90-93. doi: 10.12044/j.issn.1007-2330.2020.02.017

    WANG Zhen, LI Jingyang, ZHANG Jianchao, et al. Research on the space application of fused deposition modeling[J]. Aerospace Materials & Technology,2020,50(2):90-93(in Chinese). doi: 10.12044/j.issn.1007-2330.2020.02.017
    [9] AFROSE M F, MASOOD S H, IOVENITTI P, et al. Effects of part build orientations on fatigue behaviour of FDM-processed PLA material[J]. Progress in Additive Manufacturing,2016,1(1):21-28. doi: 10.1007/s40964-015-0002-3
    [10] WANG L, GRAMLICH W M, GARDNER D J. Improving the impact strength of poly(lactic acid) (PLA) in fused layer modeling (FLM)[J]. Polymer,2017,114:242-248. doi: 10.1016/j.polymer.2017.03.011
    [11] CARLIER E, MARQUETTE S, PEERBOOM C, et al. Investigation of the parameters used in fused deposition modeling of poly(lactic acid) to optimize 3D printing sessions[J]. International Journal of Pharmaceutics,2019,565:367-377. doi: 10.1016/j.ijpharm.2019.05.008
    [12] LEVENHAGEN N P, DADMUN M D. Bimodal molecular weight samples improve the isotropy of 3D printed polymeric samples[J]. Polymer,2017,122:232-241. doi: 10.1016/j.polymer.2017.06.057
    [13] AMBONE T, TORRIS A, SHANMUGANATHAN K. Enhancing the mechanical properties of 3D printed polylactic acid using nanocellulose[J]. Polymer Engineering and Science,2020,60(8):1842-1855. doi: 10.1002/pen.25421
    [14] YU W W, ZHANG J, WU J R, et al. Incorporation of graphitic nano-filler and poly(lactic acid) in fused deposition modeling[J]. Journal of Applied Polymer Science,2017,134(15):1-11. doi: 10.1002/app.44703
    [15] SANIEI H, MOUSAVI S. Surface modification of PLA 3D-printed implants by electrospinning with enhanced bioactivity and cell affinity[J]. Polymer,2020,196:122467. doi: 10.1016/j.polymer.2020.122467
    [16] LEE J, LEE H, CHEON K H, et al. Fabrication of poly(lactic acid)/Ti composite scaffolds with enhanced mechanical properties and biocompatibility via fused filament fabrication (FFF)-based 3D printing[J]. Additive Manufacturing,2019,30:100883. doi: 10.1016/j.addma.2019.100883
    [17] SANTOS C, TURIEL S, GOMES P S, et al. Vascular biosafety of commercial hydroxyapatite particles: Discrepancy between blood compatibility assays and endothelial cell behavior[J]. Journal of Nanobiotechnology,2018,16:27. doi: 10.1186/s12951-018-0357-y
    [18] PERA F, PESCE P, SOLIMANO F, et al. Carbon fibre versus metal framework in full-arch immediate loading rehabilitations of the maxilla—A cohort clinical study[J]. Journal of Oral Rehabilitation,2017,44(5):392-397. doi: 10.1111/joor.12493
    [19] 佘亚楠, 付烨, 朱钦睿, 等. 纸浆纤维/聚乳酸复合材料的力学和热学性能[J]. 复合材料学报, 2022, 39(10):4856-4867. doi: 10.13801/j.cnki.fhclxb.20211115.005

    SHE Yanan, FU Ye, ZHU Qinrui, et al. Mechanical and thermal properties of pulp fiber/polylactic acid composite[J]. Acta Materiae Compositae Sinica,2022,39(10):4856-4867(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211115.005
    [20] BERTEVAS E, FEREC J, KHOO B C, et al. Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process[J]. Physics of Fluids,2018,30(10):103103. doi: 10.1063/1.5047088
    [21] WANG Y, FAN Z W, ZHANG H, et al. 3D-printing of segregated carbon nanotube/polylactic acid composite with enhanced electromagnetic interference shielding and mechanical performance[J]. Materials & Design,2021,197:109222. doi: 10.1016/j.matdes.2020.109222
    [22] WICKRAMASINGHE S, DO T, TRAN P. FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments[J]. Polymers,2020,12(7):1529. doi: 10.3390/polym12071529
    [23] KASEEM M, HAMAD K, YANG H W, et al. Melt rheology of poly(vinylidene fluoride) (PVDF)/low density polyethylene (LDPE) blends[J]. Polymer Science Series A,2015,57(2):233-238. doi: 10.1134/S0965545X15020054
    [24] ZDANSKI P S B, VAZ M, INACIO G R. A finite volume approach to simulation of polymer melt flow in channels[J]. Engineering Computation,2008,25(3-4):233-250.
    [25] TOH K C, CHEN X Y, CHAI J C. Numerical computation of fluid flow and heat transfer in microchannels[J]. International Journal of Heat and Mass Transfer,2002,45(26):5133-5141. doi: 10.1016/S0017-9310(02)00223-5
    [26] SERDECZNY M P, COMMINAL R, MOLLAH M T, et al. Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing[J]. Additive Manufacturing,2020,36:101454. doi: 10.1016/j.addma.2020.101454
    [27] XIONG Q, YANG Y, XU F, et al. Overview of computational fluid dynamics simulation of reactor-scale biomass pyrolysis[J]. ACS Sustainable Chemistry & Engineering,2017,5(4):2783-2798. doi: 10.1021/acssuschemeng.6b02634
    [28] ERSHADNIA R, AMOOIE M A, SHAMS R, et al. Non-Newtonian fluid flow dynamics in rotating annular media: Physics-based and data-driven modeling[J]. Journal of Petroleum Science and Engineering,2020,185:106641. doi: 10.1016/j.petrol.2019.106641
  • 加载中
图(16) / 表(6)
计量
  • 文章访问数:  407
  • HTML全文浏览量:  162
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-11
  • 修回日期:  2022-03-19
  • 录用日期:  2022-04-05
  • 网络出版日期:  2022-04-15
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回