留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铺层角度对CFRP多向层板Ⅱ型分层扩展行为的影响

张寒松 龚愉 林文娟 张建宇 赵丽滨

张寒松, 龚愉, 林文娟, 等. 铺层角度对CFRP多向层板Ⅱ型分层扩展行为的影响[J]. 复合材料学报, 2022, 39(9): 4498-4508. doi: 10.13801/j.cnki.fhclxb.20220329.001
引用本文: 张寒松, 龚愉, 林文娟, 等. 铺层角度对CFRP多向层板Ⅱ型分层扩展行为的影响[J]. 复合材料学报, 2022, 39(9): 4498-4508. doi: 10.13801/j.cnki.fhclxb.20220329.001
ZHANG Hansong, GONG Yu, LIN Wenjuan, et al. Effect of ply angle on mode II delamination propagation behavior of CFRP multidirectional laminates[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4498-4508. doi: 10.13801/j.cnki.fhclxb.20220329.001
Citation: ZHANG Hansong, GONG Yu, LIN Wenjuan, et al. Effect of ply angle on mode II delamination propagation behavior of CFRP multidirectional laminates[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4498-4508. doi: 10.13801/j.cnki.fhclxb.20220329.001

铺层角度对CFRP多向层板Ⅱ型分层扩展行为的影响

doi: 10.13801/j.cnki.fhclxb.20220329.001
基金项目: 国家自然科学基金(12172067;11902054;12072052;12072005;11872131;U1864208);中央高校基本科研业务费(2020CDJGFHK009);重庆英才青年拔尖人才计划(CQYC2021059215)
详细信息
    通讯作者:

    龚愉,博士,副教授,硕士生导师,研究方向为复合材料力学  E-mail: gongyu@cqu.edu.cn

  • 中图分类号: TB332

Effect of ply angle on mode II delamination propagation behavior of CFRP multidirectional laminates

  • 摘要: 碳纤维增强树脂复合材料(CFRP)因其良好的力学性能被逐渐应用于飞机主承力结构中。分层是复合材料层板最常见的损伤形式之一,也是飞机复合材料结构损伤容限设计与分析所关注的焦点问题。对于II型分层,现有研究主要针对单向层板展开,而工程实际中应用较多的是多向层板,对II型分层的铺层角度影响缺乏深入认识。为此,采用试验和数值方法开展了相关研究。首先设计了3种工程实际中常用界面(0°/5°、45°/−45°和90°/90°)的T700/QY9511碳纤维/双马来酰亚胺树脂基复合材料层板,所设计铺层可降低耦合作用并确保II型主导的分层扩展。采用端部开口弯曲装置开展了II型分层试验并测得了断裂韧性。结果表明:铺层角度对断裂韧性和分层失效行为影响显著。采用控制变量法建立了内聚力关键参数模型,在此基础上实现了多向层板II型分层扩展行为的模拟,预测的载荷-位移曲线响应与试验结果吻合很好,说明了有限元模型的有效性。有限元结果表明,基体损伤做功表现出随铺层角度增加而增加的趋势。为揭示基体损伤做功与分层前缘损伤区大小之间的关系,利用用户自定义子程序,模拟了不同界面试样的分层前缘损伤区域。

     

  • 图  1  ENF试样形式与几何尺寸

    Figure  1.  ENF specimen and geometrical dimensions

    B—Specimen width; a0—Length of the initial pre-crack; L—Half of the span; h—Half of the specimen thickness

    图  2  ENF试验的三点弯加载方案示意图

    Figure  2.  Sketch of the three-point bending in ENF test

    图  3  T700/QY9511碳纤维/双马来酰亚胺树脂基复合材料多向层板ENF试样载荷-位移曲线

    Figure  3.  Load-displacement curves of T700/QY9511 carbon fiber reinforced bismaleimide composite multidirectional laminate ENF specimens

    图  4  T700/QY9511多向层板ENF试样分层路径图片

    Figure  4.  Pictures of crack path of T700/QY9511 multidirectional laminate ENF specimens

    图  5  II型分层双线性本构关系

    Figure  5.  Bilinear constitutive law of mode II delamination

    P—Load; σ—Stress; δ—Displacement; K0—Interfacial stiffness; d—Damage variable; σ0II—Interfacial strength; δ0II—Displacement when damage initiation occurs; δfII—Displacement when the interface just loses its bearing capacity

    图  6  T700/QY9511多向层板ENF试样的有限元模型 (a)、预制裂尖 (b) 和变形模拟结果 (c)

    Figure  6.  Numerical model (a), pre-crack tip (b) and simulated results (c) of T700/QY9511 multidirectional laminate ENF specimen

    图  7  0°/5°铺层角度T700/QY9511多向层板试样内聚力单元参数的确定

    Figure  7.  Determination of cohesive element parameters of T700/QY9511 multidirectional laminates with 0°/5° interface

    图  8  不同界面强度下T700/QY9511多向层板的模拟结果

    Figure  8.  Simulated results of T700/QY9511 multidirectional laminates under different interfacial strengths

    图  9  T700/QY9511多向层板内聚力单元的Mises应力云图

    Figure  9.  Mises stress in cohesive elements of T700/QY9511 multidirectional laminates

    图  10  T700/QY9511多向层板II型分层过程能量消耗情况示意图

    Figure  10.  Schematic diagram of energy consumption in mode II delamination process of T700/QY9511 multidirectional laminates

    图  11  基于奇异元的T700/QY9511多向层板数值模型:(a) ENF有限元模型;(b) 裂尖网格;(c) 三维奇异元示意图

    Figure  11.  Numerical model of T700/QY9511 multidirectional laminates based on singular element: (a) ENF FE model; (b) Mesh around crack tip; (c) Sketch of 3D singular element

    图  12  T700/QY9511多向层板裂纹尖端应力状态

    Figure  12.  Stress status of crack tip in T700/QY9511 multidirectional laminates

    σx—Stress along the x direction; τxz—Shear stress in the x-o-z plane; θ—Ply angle adjacent to the interface

    图  13  不同界面T700/QY9511多向层板试样的分层前缘损伤区

    Figure  13.  Damage area around crack tip of T700/QY9511 multidirectional laminates with different interfaces

    表  1  复合材料多向层板端部开口弯曲(ENF)试样铺层信息

    Table  1.   Stacking sequences of the composite multidirectional laminate end-notched flexure (ENF) specimens

    No.Ply-upDelamination interfaceDcBtFlexural modulus Efx
    ENF-116//(5°/−5°/0°6)S0°/5°0.00960.0063129.2947
    ENF-2(45°/−45°/0°6)S//(−45°/45°/0°6)S45°/−45°0.15270.030867.9749
    ENF-3(90°/0°/90°/0°5)S//(90°/0°/90°/0°5)S90°/90°0.0020≈069.6301
    Notes: Dc and Bt—Dimensionless parameters; //—Location of the prefabricated crack introduced during manufacturing.
    下载: 导出CSV

    表  2  T700/QY9511多向层板ENF试样的挠度和临界载荷值

    Table  2.   Deflection and critical load values of T700/QY9511 multidirectional laminate ENF specimens

    Delamination interfaceNo.Width/
    mm
    Deflection/
    mm
    Critical
    load/N
    0°/5°ENF-1-125.011.901119
    ENF-1-225.012.271235
    ENF-1-325.012.161067
    45°/−45°ENF-2-124.942.591016
    ENF-2-224.982.88915
    ENF-2-325.002.531038
    90°/90°ENF-3-124.992.23811
    ENF-3-225.042.40727
    ENF-3-325.072.17774
    下载: 导出CSV

    表  3  不同分层界面T700/QY9511多向层板ENF试样的断裂韧性试验值

    Table  3.   Fracture toughness values of T700/QY9511 multidirectional laminate ENF specimens with different interfaces

    Delamination interfaceNo.GⅡC/(J·m−2)Average value/( J·m−2)Standard deviation/(J·m−2)Cv/%
    0°/5° ENF-1-1 805.22 912.94 133.16 14.59
    ENF-1-2 1061.83
    ENF-1-3 871.77
    45°/−45° ENF-2-1 1000.79 997.57 3.31 0.33
    ENF-2-2 997.77
    ENF-2-3 994.17
    90°/90° ENF-3-1 686.81 660.12 26.51 4.02
    ENF-3-2 659.78
    ENF-3-3 633.77
    Notes: GⅡCMode II strain energy release rate; Cv—Coefficient of variation.
    下载: 导出CSV

    表  4  不同界面强度下T700/QY9511多向层板临界载荷模拟值与试验均值对比

    Table  4.   Simulated and experimental values of critical load of T700/QY9511 multidirectional laminates under various interfacial strengths

    Delamination interfaceInterfacial strength/MPaSimulated result of critical load/NAverage test value/NRelative error/%
    0°/5° 30 990.3 1140.3 −13.2
    40 1113.4 −2.4
    50 1154.4 1.2
    45°/−45° 50 881.6 989.7 −10.9
    60 1012.5 2.3
    70 1165.9 17.8
    90°/90° 35 701.7 770.7 −9.0
    45 781.3 1.4
    50 870.8 13.0
    下载: 导出CSV

    表  5  T700/QY9511多向层板分层起始时刻裂尖应变能释放率(SERR)分量

    Table  5.   Strain energy release rate (SERR) components of crack tip at the delamination initiation moment of T700/QY9511 multidirectional laminates

    Delamination
    interface
    GI/(J·m−2)GII/( J·m−2)GIII/( J·m−2)GII/
    (GI+GII+GIII)
    0°/5°0.26894.081.151.00
    45°/-45°0.68950.5228.320.97
    90°/90°0.06608.031.091.00
    Notes: GI—Mode I strain energy release rate; GII—Mode II strain energy release rate; GIII—Mode III strain energy release rate.
    下载: 导出CSV
  • [1] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. doi: 10.3321/j.issn:1000-3851.2008.01.001

    DU Shanyi, GUAN Zhidong. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica,2008,25(1):1-10(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.001
    [2] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [3] TEIMOURI F, HEIDARI-RARANI M, HAJI ABOUTALEBI F. Finite element modeling of mode I fatigue delamination growth in composites under large-scale fiber bridging[J]. Composite Structures,2021,263:113716.
    [4] BIN MOHAMED REHAN M S, ROUSSEAU J, FONTAINE S, et al. Experimental study of the influence of ply orientation on DCB mode-I delamination behavior by using multidirectional fully isotropic carbon/epoxy laminates[J]. Composite Structures, 2017, 161(Supplement C): 1-7.
    [5] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 39(1):1-28.

    ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica,2019,39(1):1-28(in Chinese).
    [6] 李玉龙, 刘会芳. 加载速率对层间断裂韧性的影响[J]. 航空学报, 2015, 36(8):2620-2650.

    LI Y L, LIU H F. Loading rate effect on interlaminar fracture toughness[J]. Acta Aeronautica et Astronautica Sinica,2015,36(8):2620-2650(in Chinese).
    [7] HYUNG Y C, CHANG F. A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J]. Journal of Composite Materials,1992,26(14):2134-2169. doi: 10.1177/002199839202601408
    [8] 郭壮壮, 徐武, 余音. 低温环境下测试复合材料I型层间断裂韧性的简易方法[J]. 复合材料学报, 2019, 36(5):1210-1215.

    GUO Z Z, XU W, YU Y. A simple method for determining the mode I interlaminar fracture toughness of composite at low temperature[J]. Acta Materiae Compositae Sinica,2019,36(5):1210-1215(in Chinese).
    [9] GARULLI T, CATAPANO A, FANTERIA D, et al. Experimental assessment of fully-uncoupled multi-directional specimens for mode I delamination tests[J]. Composites Science and Technology,2020,200:108421. doi: 10.1016/j.compscitech.2020.108421
    [10] LAKSIMI A, AHMED BENYAHIA A, BENZEGGAGH M L, et al. Initiation and bifurcation mechanisms of cracks in multi-directional laminates[J]. Composites Science and Technology,2000,60(4):597-604. doi: 10.1016/S0266-3538(99)00179-7
    [11] DAVIDSON B D, KRUGER R, KOING M. Effect of stacking sequence on energy release rate distributions in multidirectional DCB and ENF specimens[J]. Engineering Fracture Mechanics,1996,55(4):557-569. doi: 10.1016/S0013-7944(96)00037-9
    [12] OZDIL F, CARLSSON L A, DAVIES P. Beam analysis of angle-ply laminate end-notched flexure specimens[J]. Composites Science and Technology,1998,58(12):1929-1938. doi: 10.1016/S0266-3538(98)00018-9
    [13] PEREIRA A B, DE MORAIS A B, MARQUES A T, et al. Mode II interlaminar fracture of carbon/epoxy multidirectional laminates[J]. Composites Science and Technology,2004,64(10):1653-1659.
    [14] PEREIRA A B, DE MORAIS A B. Mode II interlaminar fracture of glass/epoxy multidirectional laminates[J]. Composites Part A: Applied Science and Manufacturing,2004,35(2):265-272. doi: 10.1016/j.compositesa.2003.09.028
    [15] CHAI H. Interlaminar shear fracture of laminated composites[J]. International Journal of Fracture,1990,43(2):117-131. doi: 10.1007/BF00036181
    [16] HERRÁEZ M, PICHLER N, PAPPAS G A, et al. Experiments and numerical modelling on angle-ply laminates under remote mode II loading[J]. Composites Part A: Applied Science and Manufacturing,2020,134:105886. doi: 10.1016/j.compositesa.2020.105886
    [17] POLAHA J J, DAVIDSON B D, HUDSON R C, et al. Effects of mode ratio, ply orientation and precracking on the delamination toughness of a laminated composite[J]. Journal of Reinforced Plastics and Composites,1996,15(2):141-173. doi: 10.1177/073168449601500202
    [18] SALAMAT-TALAB M, SHOKRIEH M M, MOHAGHEGH M. On the R-curve and cohesive law of glass/epoxy end-notch flexure specimens with 0//θ interface fiber angles[J]. Polymer Testing,2020,93:106992.
    [19] CHOI N S, KINLOCH A J, WILLIAMS J G. Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I, mode II and mixed-mode I/II loading[J]. Journal of Composite Materials,1999,33(1):73-100. doi: 10.1177/002199839903300105
    [20] TAO J, SUN C T. Influence of ply orientation on delamination in composite laminates[J]. Journal of Composite Materials,1998,32(21):1933-1947. doi: 10.1177/002199839803202103
    [21] HWANG J H, KWON O, LEE C S, et al. Interlaminar fracture and low-velocity impact of carbon/epoxy composite materials[J]. Mechanics of Composite Materials,2000,36(2):117-130. doi: 10.1007/BF02681828
    [22] 中国航空工业总公司. 碳纤维复合材料层合板II型层间断裂韧性GIIC试验方法: HB 7403—1996[S]. 北京: 中国标准出版社, 1996

    China Aviation Industry Corporation. Test method for mode II interlaminar fracture toughness GIIC of carbon fiber composite laminates: HB 7403—1996[S]. Beijing: China Standards Press, 1996(in Chinese).
    [23] 李西宁, 王悦舜, 周新房. 复合材料层合板分层损伤数值模拟方法现状[J]. 复合材料学报, 2021, 38(4):1076-1086.

    LI Xining, WANG Yueshun, ZHOU Xinfang. Status of numerical simulation methods for delamination damage of composite laminates[J]. Acta Materiae Compositae Sinica,2021,38(4):1076-1086(in Chinese).
    [24] ZHAO L, GONG Y, ZHANG J, et al. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements[J]. Composite Structures,2014,116:509-522. doi: 10.1016/j.compstruct.2014.05.042
    [25] CAMANHO P P, DÁVILA C G, PINHO S T, et al. Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear[J]. Composites Part A: Applied Science and Manufacturing,2006,37(2):165-176. doi: 10.1016/j.compositesa.2005.04.023
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  966
  • HTML全文浏览量:  456
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 修回日期:  2022-03-09
  • 录用日期:  2022-03-18
  • 网络出版日期:  2022-03-31
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回