留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于木质素分子结构特性的功能材料研究进展

姜波 金永灿

姜波, 金永灿. 基于木质素分子结构特性的功能材料研究进展[J]. 复合材料学报, 2022, 39(7): 3059-3083. doi: 10.13801/j.cnki.fhclxb.20220321.001
引用本文: 姜波, 金永灿. 基于木质素分子结构特性的功能材料研究进展[J]. 复合材料学报, 2022, 39(7): 3059-3083. doi: 10.13801/j.cnki.fhclxb.20220321.001
JIANG Bo, JIN Yongcan. Research progress of lignin functional materials based on its structural properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3059-3083. doi: 10.13801/j.cnki.fhclxb.20220321.001
Citation: JIANG Bo, JIN Yongcan. Research progress of lignin functional materials based on its structural properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3059-3083. doi: 10.13801/j.cnki.fhclxb.20220321.001

基于木质素分子结构特性的功能材料研究进展

doi: 10.13801/j.cnki.fhclxb.20220321.001
基金项目: 国家自然科学基金 (31730106);江苏省重点研发计划(BE2021368);江苏省高校自然科学研究基金(21KJB220001)
详细信息
    通讯作者:

    姜波,博士,副教授,硕士生导师,研究方向为生物质化学与材料 E-mail: bjiang@njfu.edu.cn

    金永灿,博士,教授,博士生导师,研究方向为制浆造纸工程 E-mail: jinyongcan@njfu.edu.cn

  • 中图分类号: O636.2

Research progress of lignin functional materials based on its structural properties

  • 摘要: 木质素是自然界中储量最大的可再生芳香生物质资源,其大分子是由苯丙烷结构单元(愈创木基、紫丁香基和对羟基苯基)通过醚键和碳-碳键连接聚合而成,具有天然的生物活性、亲疏水性、纳米尺度的可调节性、分子结构设计的灵活性以及生物相容性等特点。围绕木质素的分子结构特性,重点综述了近年来国内外在木质素功能材料方面的研究成果与进展。首先从木质素化学组成和分布等角度探讨了木质素的分子结构特性;然后从基于原生木质素结构特点的直接功能应用、基于木质素分子结构调控的材料创制和应用以及基于木质素碳材料的开发和应用三个方面出发,系统讨论了木质素功能材料的研究现状和亟需突破的瓶颈;最后,简述了木质素在其他领域的应用进展,并展望了木质素功能应用工作中的重点以及未来的发展方向。

     

  • 图  1  木质素结构及其分布:(a)木质素单体结构;(b)木质素结构单元及其连接键示意图;(c)植物细胞壁各层示意图

    Figure  1.  Structure and distribution of lignin: (a) Lignin monomers; (b) Schematic of lignin structural units and their linkages; (c) Schematic of layers of plant cell walls

    H—p-Hydroxyphenyl; S—Syringyl; G—Guaiacyl; M—Middle lamella; P— Primary cell wall; S—Secondary wall (S1, S2 and S3)

    图  2  木质素在材料领域的主要利用形式

    Figure  2.  Utilization types of lignin materials

    图  3  木质素抗氧化剂(a)[14-16]与紫外防护剂(b)[24]

    Figure  3.  Antioxidant (a)[14-16]and UV-protection (b)[24] properties of lignin

    ROS—Reactive oxygen species; KL—Kraft lignin; AgNCs/NPs—Ag nanocomplexes/nanoparticles; LH10/60—Lignin fractions with 10 min or 60 min extraction at 109℃; LM10/60—Lignin fractions with 10 min or 60 min extraction at 90℃; BHA—Butyl hydroxyanisole; BHT—Butylated hydroxytoluene; DPPH·—1,1-Diphenyl-2-picrylhydrazyl radical

    图  4  木质素的抗菌特性[26-28]

    Figure  4.  Antimicrobial activity of lignin[26-28]

    ATP─Adenosine triphosphate; LNP─Lignin nanoparticles; PAA─Poly(acrylic acid)

    图  5  木质素增强剂的高性能木材[37]

    Figure  5.  High-performance bulk wood with lignin binder[37]

    HSSS─High-specific-strength steel

    图  6  木质素基纳米凝胶在医学领域的应用:(a)抗菌木质素/银复合纳米颗粒[31];(b)基于木质素/银纳米颗粒触发的动态氧化还原儿茶酚高粘、高韧水凝胶[68]

    Figure  6.  Application of lignin-based nanogel on medicine: (a) Antimicrobial lignin/Ag composite nanoparticle[31]; (b) High adhesive and tough hydrogel based on lignin/Ag nanoparticles-triggered dynamic redox catechol [68]

    PDAC─Poly(diallyldimethylammonium chloride); PEGDA─Poly (ethylene glycol) dimethacrylate

    图  7  木质素的熔融沉积式(FDM) (a)[81]和“墨水”挤出式(b) 3D打印[83]

    Figure  7.  FDM (a)[81] and ink extrusion (b)-based 3D printing of lignin[83]

    图  8  木质素基形状记忆材料[89,91,92]

    Figure  8.  Lignin-based shape memory materials[89,91,92]

    HW─Hardwood; SW─Softwood

    图  9  木质素碳材料及其应用:(a)活性碳[95];(b)干法纺丝制备的碳纤维[125];(c)碳纤维膜电极[129];(d)木质素基石墨烯电极[135]

    Figure  9.  Lignin-based carbon materials and their applications: (a) Active carbon [95]; (b) Carbon fiber from dry-spinning [125]; (c) Electrode of carbon fiber membrane [129]; (d) Electrode of lignin-derived graphene [135]

    表  1  不同木质素的结构特性差异比较[3-4]

    Table  1.   Comparison of the different lignin and their properties[3-4]

    Lignin typesKraft ligninLignosulfonateSoda ligninOrganosolv lignin
    Separation(1) Acid precipitation
    (2) Ultrafiltration
    Ultrafiltration(1) Acid precipitation
    (2) Ultrafiltration
    (1) Nonsolvent precipitation
    (2) Dissolved air floatation
    S/%1.0-3.03.5-8.000
    N/%0.050.020.2-1.00-0.3
    Molecular weight/
    (103 g·mol−1)
    1.5-5.01.0-50.00.8-3.00.5-5.0
    Polydispersity2.5-3.56.0-8.02.5-3.51.5-2.5
    Acid-soluble lignin1.0-5.01.0-11.0~2.0
    SolubilitySoda, pyridine, chloroform, dimethylsulfoxide, etc.WaterSodaCommon organic solvents
    Glass transition temperature/ºC140-150~130~14090-110
    Decomposition temperature/ºC340-370250-260360-370390-400
    下载: 导出CSV

    表  2  木质素常见的改性途径[18]

    Table  2.   Summary of the main chemical modifications of lignin[18]

    Chemical modificationMethodologyMain products
    Hydroxyalky-lationDemethylation, phenolation and methylolation, etc.Lignin-phenol-formaldehyde resins
    AminationMannich reactionFor synthesis of Asphalt emulsifiers, cationic surfactants, epoxy resins, and polyurethane
    NitrationReaction with nitrating agents, such as nitric acid with acetic anhydride, acetic acid or sulfuric acidFunctional membrane
    Sulfomethy-lationUnder neutral to basic pH, the methylene sulfonate groups are added to lignin structure by using methanol and alkali metal sulfiteDye dispersant
    SulfonationReaction with sulfuric acid or sodium sulfiteCement dispersant
    Alkylation/
    Dealkylation
    Reaction with diazoalkanes, or alcohol, or alkylsulfates and sodium hydroxideBinder
    EsterificationReaction with cyclic esters (e-caprolactone, lactide, etc.), or carboxylic acid chloride (e.g., sebacoyl chloride and terephtaloyl chloride), or dicarboxylic acids (e.g., dimeric acid and carboxytelechelic polybutadiene)Lignin-based epoxy resins, polyurethanes, and unsaturated thermosetting composites
    EtherificationReaction with alkylene oxide (e.g., ethylene oxide and propylene oxide), or epichlorohydrin, or diglycidyl ethers, or solvolysis of lignin with ethylene glycolLignin-based epoxy resins
    PhenolationReaction with phenol in the presence of organic solvents (e.g., methanol or ethanol)Lignin phenol formaldehyde resins, lignin-based polyurethanes films
    Urethani-
    zation
    Reaction with diisocyanate and another diol, or isocyanate-based prepolymerLignin-based polyurethane
    下载: 导出CSV
  • [1] ABU-OMAR M M, BARTA K, BECKHAM G T, et al. Guidelines for performing lignin-first biorefining[J]. Energy & Environmental Science,2021,14(1):262-292.
    [2] VANHOLME R, DE MEESTER B, RALPH J, et al. Lignin biosynthesis and its integration into metabolism[J]. Current Opinion in Biotechnology,2019,56:230-239. doi: 10.1016/j.copbio.2019.02.018
    [3] 袁同琦, 孙卓华, 戴林. 木质素化学 [M]. 北京: 中国轻工业出版社, 2021.

    YUAN Tongqi, SUN Zhuohua, DAI Lin. Lignin chemistry [M]. Beijing: China Light Industry Press Ltd. , 2021 (in Chinese).
    [4] 裴继诚, 平清伟, 唐爱民, 等. 植物纤维化学(第五版) [M]. 北京: 中国轻工业出版社, 2020.PEI Jicheng, PING Qingwei, TANG Aimin, et al. Lignocellulosic chemistry (Fifth edition) [M]. Beijing: China Light Industry Press Ltd. , 2020 (in Chinese).
    [5] MOTTIAR Y, VANHOLME R, BOERJAN W, et al. Designer lignins: Harnessing the plasticity of lignification[J]. Current Opinion in Biotechnology,2016,37:190-200. doi: 10.1016/j.copbio.2015.10.009
    [6] BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis[J]. Annual Review of Plant Biology,2003,54:519-546. doi: 10.1146/annurev.arplant.54.031902.134938
    [7] RALPH J, LAPIERRE C, BOERJAN W. Lignin structure and its engineering [J]. Current Opinion in Biotechnology, 2019, 56: 240-249.
    [8] 姜波, 曹婷月, 谷峰, 等. 碳酸钠预处理对麦草酶水解及木质素结构的影响 [J]. 南京林业大学学报(自然科学版), 2016, 40(6): 135-140.

    JIANG Bo, CAO Tingyue, GU Feng, et al. Effects of sodium carbonate pretreatment on enzymatic hydrolysis and lignin structure of wheat straw [J]. Journal of Nanjing Forestry University (Natural Sciences Edition) 2016, 40(6): 135-140 (in Chinese).
    [9] JIANG B, WANG W, GU F, et al. Comparison of the substrate enzymatic digestibility and lignin structure of wheat straw stems and leaves pretreated by green liquor [J]. Bioresource Technology, 2016, 199: 181-187.
    [10] JIANG B, CAO T Y, GU F, et al. Comparison of the structural characteristics of cellulolytic enzyme lignin preparations isolated from wheat straw stem and leaf [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 342-349.
    [11] OJAGH S M, NÚÑEZ-FLORES R, LÓPEZ-CABALLERO M E, et al. Lessening of high-pressure-induced changes in Atlantic salmon muscle by the combined use of a fish gelatin-lignin film[J]. Food Chemistry,2011,125(2):595-606. doi: 10.1016/j.foodchem.2010.08.072
    [12] WANG Y, SUN S, LI F, et al. Production of vanillin from lignin: The relationship between β-O-4 linkages and vanillin yield[J]. Industrial Crops and Products,2018,116:116-121. doi: 10.1016/j.indcrop.2018.02.043
    [13] AZADFAR M, GAO A H, BULE M V, et al. Structural characterization of lignin: A potential source of antioxidants guaiacol and 4-vinylguaiacol[J]. International Journal of Biological Macromolecules,2015,75:58-66. doi: 10.1016/j.ijbiomac.2014.12.049
    [14] CHANDNA S, THAKUR N S, REDDY Y N, et al. Engineering lignin stabilized bimetallic nanocomplexes: Structure, mechanistic elucidation, antioxidant, and antimicrobial potential[J]. ACS Biomaterials Science & Engineering,2019,5(7):3212-3227.
    [15] LI M, SUN S, XU F, et al. Microwave-assisted organic acid extraction of lignin from bamboo: Structure and antioxidant activity investigation[J]. Food Chemistry,2012,134(3):1392-1398. doi: 10.1016/j.foodchem.2012.03.037
    [16] LI Z, ZHANG J, QIN L, et al. Enhancing antioxidant performance of lignin by enzymatic treatment with laccase[J]. ACS Sustainable Chemistry & Engineering,2018,6(2):2591-2595.
    [17] JIANG B, ZHANG Y, ZHAO H, et al. Structure-antioxidant activity relationship of active oxygen catalytic lignin and lignin-carbohydrate complex[J]. International Journal of Biological Macromolecules,2019,139:21-29. doi: 10.1016/j.ijbiomac.2019.07.134
    [18] FIGUEIREDO P, LINTINEN K, HIRVONEN J T, et al. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications[J]. Progress in Materials Science,2018,93:233-269. doi: 10.1016/j.pmatsci.2017.12.001
    [19] DEAN J C, NAVOTNAYA P, PAROBEK A P, et al. Ultraviolet spectroscopy of fundamental lignin subunits: Guaiacol, 4-methylguaiacol, syringol, and 4-methylsyringol[J]. Journal of Chemical Physics,2013,139(14):16.
    [20] SUN Y, YANG L, LU X, et al. Biodegradable and renewable poly (lactide)-lignin composites: Synthesis, interface and toughening mechanism[J]. Journal of Materials Chemistry A,2015,3(7):3699-3709. doi: 10.1039/C4TA05991C
    [21] CHUNG Y L, OLSSON J V, LI R J, et al. A renewable lignin–lactide copolymer and application in biobased composites[J]. ACS Sustainable Chemistry & Engineering,2013,1(10):1231-1238.
    [22] TIAN D, HU J, BAO J, et al. Lignin valorization: Lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites[J]. Biotechnology for Biofuels,2017,10:192. doi: 10.1186/s13068-017-0876-z
    [23] EWULONU C M, LIU X, WU M, et al. Lignin-containing cellulose nanomaterials: A promising new nanomaterial for numerous applications[J]. Journal of Bioresources and Bioproducts,2019,4(1):3-10. doi: 10.21967/jbb.v4i1.186
    [24] MI R, CHEN C, KEPLINGER T, et al. Scalable aesthetic transparent wood for energy efficient buildings[J]. Nature Communications,2020,11:3836. doi: 10.1038/s41467-020-17513-w
    [25] 岳凤霞, 林敏生, 钱勇, 等. 木质素抗紫外辐射性能应用研究进展[J]. 林业工程学报, 2021, 6(02):12-20.

    YUE Fengxia, LIN Minsheng, QIAN Yong, et al. Recent advances of anti-UV radiation of lignin[J]. Journal of Forestry Engineering,2021,6(02):12-20(in Chinese).
    [26] YANG W, FORTUNATI E, GAO D, et al. Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials[J]. ACS Sustainable Chemistry & Engineering,2018,6(3):3502-3514.
    [27] AFEWERKI S, WANG X, RUIZ-ESPARZA G U, et al. Combined catalysis for engineering bioinspired, lignin-based, long-lasting, adhesive, self-mending, antimicrobial hydrogels[J]. ACS Nano,2020,14(12):17004-17017. doi: 10.1021/acsnano.0c06346
    [28] ZHANG L, MA J, LYU, B, et al. A sustainable waterborne vanillin-eugenol-acrylate miniemulsion with suitable antibacterial properties as a substitute for the styrene-acrylate emulsion[J]. Green Chemistry,2021,23(19):7576-7588. doi: 10.1039/D1GC01766G
    [29] DUMITRIU S, POPA V. Polymeric biomaterials: Structure and function [M]. Boca Raton: CRC Press, 2013.
    [30] GREGOROVA A, REDIK S, SEDLARIK V, et al. Lignin-containing polyethylene films with antibacterial activity [C]. Brno, Czech Repubic: NANOCON 2011-Conference Proceedings, 3rd International Conference, 2011: 184-189.
    [31] RICHTER A P, BROWN J S, BHARTI B, et al. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core[J]. Nature Nanotechnology,2015,10:817-823. doi: 10.1038/nnano.2015.141
    [32] HU S, HSIEH Y. Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent[J]. Carbohydrate Polymers,2015,131:134-141. doi: 10.1016/j.carbpol.2015.05.060
    [33] KU H, WANG H, PATTARACHAIYAKOOP N, et al. A review on the tensile properties of natural fiber reinforced polymer composites[J]. Composites Part B: Engineering,2011,42(4):856-873. doi: 10.1016/j.compositesb.2011.01.010
    [34] LI H, LIANG Y, LI P, et al. Conversion of biomass lignin to high-value polyurethane: A review[J]. Journal of Bioresources and Bioproducts,2020,5(2):163-179.
    [35] MALDHURE A V, EKHE J D, DEENADAYALAN E. Mechanical properties of polypropylene blended with esterified and alkylated lignin[J]. Journal of Applied Polymer Science,2012,125(3):1701-1712. doi: 10.1002/app.35633
    [36] SAILAJA R R N. Low density polyethylene and grafted lignin polyblends using epoxy-functionalized compatibilizer: Mechanical and thermal properties[J]. Polymer International,2005,54(12):1589-1598. doi: 10.1002/pi.1864
    [37] SONG J, CHEN C, ZHU S, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature,2018,554:224. doi: 10.1038/nature25476
    [38] JIANG B, CHEN C, LIANG Z, et al. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement[J]. Advanced Functional Materials,2020,30(4):1906307. doi: 10.1002/adfm.201906307
    [39] WANG Q, DU H, ZHANG F, et al. Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method[J]. Journal of Materials Chemistry A,2018,6(27):13021-13030. doi: 10.1039/C8TA01986J
    [40] SADEGHIFAR H, VENDITTI R, JUR J, et al. Cellulose-lignin biodegradable and flexible UV protection film[J]. ACS Sustainable Chemistry & Engineering,2017,5(1):625-631.
    [41] MUENCH S, WILD A, FRIEBE C, et al. Polymer-based organic batteries[J]. Chemical Reviews,2016,116(16):9438-9484. doi: 10.1021/acs.chemrev.6b00070
    [42] LIN K, CHEN Q, GERHARDT M R, et al. Alkaline quinone flow battery[J]. Science,2015,349(6255):1529-1532. doi: 10.1126/science.aab3033
    [43] LIANG Y, JING Y, GHEYTANI S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries[J]. Nature Materials,2017,16:841-848. doi: 10.1038/nmat4919
    [44] MILCZAREK G, INGANÄS O. Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks[J]. Science,2012,335(6075):1468-1471. doi: 10.1126/science.1215159
    [45] MIROSHNIKOV M, DIVYA K P, BABU G, et al. Power from nature: Designing green battery materials from electroactive quinone derivatives and organic polymers[J]. Journal of Materials Chemistry A,2016,4(32):12370-12386. doi: 10.1039/C6TA03166H
    [46] MUKHOPADHYAY A, HAMEL J, KATAHIRA R, et al. Metal-free aqueous flow battery with novel ultrafiltered lignin as electrolyte[J]. ACS Sustainable Chemistry & Engineering,2018,6(4):5394-5400.
    [47] YE J, CHENG Y, SUN L, et al. A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery[J]. Journal of Membrane Science,2019,572:110-118. doi: 10.1016/j.memsci.2018.11.009
    [48] LU Q, ZHU M, ZU Y, et al. Comparative antioxidant activity of nanoscale lignin prepared by a supercritical antisolvent (SAS) process with non-nanoscale lignin[J]. Food Chemistry,2012,135(1):63-67. doi: 10.1016/j.foodchem.2012.04.070
    [49] YEARLA S R, PADMASREE K. Preparation and characterisation of lignin nanoparticles: Evaluation of their potential as antioxidants and UV protectants[J]. Journal of Experimental Nanoscience,2016,11(4):289-302. doi: 10.1080/17458080.2015.1055842
    [50] GUPTA A K, MOHANTY S, NAYAK S K. Influence of addition of vapor grown carbon fibers on mechanical, thermal and biodegradation properties of lignin nanoparticle filled bio-poly(trimethylene terephthalate) hybrid nanocomposites[J]. RSC Advances,2015,5(69):56028-56036. doi: 10.1039/C5RA07828H
    [51] QIAN Y, QIU X, ZHONG X, et al. Lignin reverse micelles for UV-absorbing and high mechanical performance thermoplastics[J]. Industrial & Engineering Chemistry Research,2015,54(48):12025-12030.
    [52] YU J, WANG J, WANG C, et al. UV-absorbent lignin-based multi-arm star thermoplastic elastomers[J]. Macromolecular Rapid Communications,2015,36(4):398-404. doi: 10.1039/C4GC01242A
    [53] AGO M, HUAN S, BORGHEI M, et al. High-throughput synthesis of lignin particles (approximately 30 nm to approximately 2 μm) via aerosol flow reactor: Size fractionation and utilization in pickering emulsions[J]. ACS Applied Materials & Interfaces,2016,8(35):23302-23310.
    [54] FRANGVILLE C, RUTKEVIČIUS M, RICHTER A P, et al. Fabrication of environmentally biodegradable lignin nanoparticles[J]. ChemPhysChem,2012,13(18):4235-4243. doi: 10.1002/cphc.201200537
    [55] TORTORA M, CAVALIERI F, MOSESSO P, et al. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules[J]. Biomacromolecules,2014,15(5):1634-1643. doi: 10.1021/bm500015j
    [56] TEN E, LING C, WANG Y, et al. Lignin nanotubes as vehicles for gene delivery into human cells[J]. Biomacromolecules,2014,15(1):327-338. doi: 10.1021/bm401555p
    [57] LIU X, YIN H, ZHANG Z, et al. Functionalization of lignin through ATRP grafting of poly(2-dimethylaminoethyl methacrylate) for gene delivery[J]. Colloids and Surfaces B: Biointerfaces,2015,125:230-237. doi: 10.1016/j.colsurfb.2014.11.018
    [58] KIM S, FERNANDES M M, MATAMÁ T, et al. Chitosan-lignosulfonates sono-chemically prepared nanoparticles: Characterisation and potential applications[J]. Colloids and Surfaces B: Biointerfaces,2013,103:1-8. doi: 10.1016/j.colsurfb.2012.10.033
    [59] LI H, DENG Y, LIU B, et al. Preparation of nanocapsules via the self-assembly of kraft lignin: A totally green process with renewable resources[J]. ACS Sustainable Chemistry & Engineering,2016,4(4):1946-1953.
    [60] CHEN N, DEMPERE L A, TONG Z. Synthesis of pH-responsive lignin-based nanocapsules for controlled release of hydrophobic molecules[J]. ACS Sustainable Chemistry & Engineering,2016,4(10):5204-5211.
    [61] LINTINEN K, LATIKKA M, SIPPONEN M H, et al. Structural diversity in metal-organic nanoparticles based on iron isopropoxide treated lignin[J]. RSC Advances,2016,6(38):31790-31796. doi: 10.1039/C6RA03865D
    [62] FIGUEIREDO P, LINTINEN K, KIRIAZIS A, et al. In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells[J]. Biomaterials,2017,121:97-108. doi: 10.1016/j.biomaterials.2016.12.034
    [63] EL-ZAWAWY W K. Preparation of hydrogel from green polymer[J]. Polymers for Advanced Technologies,2005,16(1):48-54. doi: 10.1002/pat.537
    [64] EL-ZAWAWY W K, IBRAHIM M M. Preparation and characterization of novel polymer hydrogel from industrial waste and copolymerization of poly(vinyl alcohol) and polyacrylamide[J]. Journal of Applied Polymer Science,2012,124(5):4362-4370. doi: 10.1002/app.35481
    [65] GRISHECHKO L I, AMARAL-LABAT G, SZCZUREK A, et al. New tannin-lignin aerogels[J]. Industrial Crops and Products,2013,41:347-355. doi: 10.1016/j.indcrop.2012.04.052
    [66] CIOLACU D, OPREA A M, ANGHEL N, et al. New cellulose-lignin hydrogels and their application in controlled release of polyphenols[J]. Materials Science and Engineering: C,2012,32(3):452-463. doi: 10.1016/j.msec.2011.11.018
    [67] SUN X, HAO Y, CAO Y, et al. Superadsorbent hydrogel based on lignin and montmorillonite for Cu(II) ions removal from aqueous solution[J]. International Journal of Biological Macromolecules,2019,127:511-519. doi: 10.1016/j.ijbiomac.2019.01.058
    [68] GAN D, XING W, JIANG L, et al. Plant-inspired adhesive and tough hydrogel based on Ag-lignin nanoparticles-triggered dynamic redox catechol chemistry[J]. Nature communications,2019,10:1487. doi: 10.1038/s41467-019-09351-2
    [69] DIAO B, ZHANG Z, ZHU J, et al. Biomass-based thermogelling copolymers consisting of lignin and grafted poly(N-isopropylacrylamide), poly(ethylene glycol), and poly(propylene glycol)[J]. RSC Advances,2014,4(81):42996-43003. doi: 10.1039/C4RA08673B
    [70] RASCHIP I E, HITRUC G E, VASILE C, et al. Effect of the lignin type on the morphology and thermal properties of the xanthan/lignin hydrogels[J]. International Journal of Biological Macromolecules,2013,54:230-237. doi: 10.1016/j.ijbiomac.2012.12.036
    [71] QURAISHI S, MARTINS M, BARROS A A, et al. Novel non-cytotoxic alginate-lignin hybrid aerogels as scaffolds for tissue engineering[J]. The Journal of Supercritical Fluids,2015,105:1-8. doi: 10.1016/j.supflu.2014.12.026
    [72] TOFAIL S A M, KOUMOULOS E P, BANDYOPADHYAY A, et al. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities[J]. Materials Today,2017,21(1):22-37.
    [73] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering,2018,143:172-196. doi: 10.1016/j.compositesb.2018.02.012
    [74] LIND J U, BUSBEE T A, VALENTINE A D, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing[J]. Nature Materials,2017,16:303-308. doi: 10.1038/nmat4782
    [75] 齐俊梅, 姚雪丽, 陈辉辉, 等. 3D打印聚合物材料的研究进展[J]. 热固性树脂, 2019, 34(2):60-63.

    QI Junmei, YAO Xueli, CHEN Huihui, et al. Research progress of polymeric materials for 3D printing technology[J]. Thermosetting Resin,2019,34(2):60-63(in Chinese).
    [76] WANG X, JIANG M, ZHOU Z, et al. 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B: Engineering,2017,110:442-458. doi: 10.1016/j.compositesb.2016.11.034
    [77] GO J, SCHIFFRES S N, STEVENS A G, et al. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design[J]. Additive Manufacturing,2017,16:1-11. doi: 10.1016/j.addma.2017.03.007
    [78] SUN Q, KHUNSUPAT R, AKATO K, et al. A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors[J]. Green Chemistry,2016,18(18):5015-5024. doi: 10.1039/C6GC00977H
    [79] TRAN C D, CHEN J, KEUM J K, et al. A new class of renewable thermoplastics with extraordinary performance from nanostructured lignin-elastomers[J]. Advanced Functional Materials,2016,26(16):2677-2685. doi: 10.1002/adfm.201504990
    [80] NGUYEN N A, MEEK K M, BOWLAND C C, et al. An acrylonitrile-butadiene-lignin renewable skin with programmable and switchable electrical conductivity for stress/strain-sensing applications[J]. Macromolecules,2018,51(1):115-127. doi: 10.1021/acs.macromol.7b02336
    [81] NGUYEN N A, BARNES S H, BOWLAND C C, et al. A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability[J]. Science Advances,2018,4(12):eaat4967. doi: 10.1126/sciadv.aat4967
    [82] SUTTON J T, RAJAN K, HARPER D P, et al. Lignin-containing photoactive resins for 3D printing by stereolithography[J]. ACS Applied Materials & Interfaces,2018,10(42):36456-36463.
    [83] JIANG B, YAO Y, LIANG Z, et al. Lignin-based direct ink printed structural scaffolds[J]. Small,2020,16(31):1907212. doi: 10.1002/smll.201907212
    [84] JIANG B, HUANG H, GONG W, et al. Wood-inspired binder enabled vertical 3D printing of g-C3N4/CNT arrays for highly efficient photoelectrochemical hydrogen evolution[J]. Advanced Functional Materials,2021,31(45):2105045. doi: 10.1002/adfm.202105045
    [85] FENG Q, CHEN F, WU H. Preparation and characterization of a temperature-sensitive lignin-based hydrogel[J]. Bioresources,2011,6:4942-4952.
    [86] GAO G, KARAASLAN M A, KADLA J F, et al. Enzymatic synthesis of ionic responsive lignin nanofibres through surface poly (N-isopropylacrylamide) immobilization[J]. Green Chemistry,2014,16(8):3890-3898. doi: 10.1039/C4GC00757C
    [87] DALLMEYER I, CHOWDHURY S, KADLA J F. Preparation and characterization of kraft lignin-based moisture-responsive films with reversible shape-change capability[J]. Biomacromolecules,2013,14(7):2354-2363. doi: 10.1021/bm400465p
    [88] QIAN Y, ZHANG Q, QIU X, et al. CO2-responsive diethylaminoethyl-modified lignin nanoparticles and their application as surfactants for CO2/N2-switchable pickering emulsions[J]. Green Chemistry,2014,16(12):4963-4968.
    [89] LI H, SIVASANKARAPILLAI G, MCDONALD A G. Highly biobased thermally-stimulated shape memory copolymeric elastomers derived from lignin and glycerol-adipic acid based hyperbranched prepolymer[J]. Industrial Crops and Products,2015,67:143-154. doi: 10.1016/j.indcrop.2015.01.031
    [90] SIVASANKARAPILLAI G, LI H, MCDONALD A G. Lignin-based triple shape memory polymers[J]. Biomacromolecules,2015,16(9):2735-2742. doi: 10.1021/acs.biomac.5b00655
    [91] NGUYEN N A, MEEK K M, BOWLAND C C, et al. Responsive lignin for shape memory applications[J]. Polymer,2019,160:210-222. doi: 10.1016/j.polymer.2018.11.055
    [92] XU Y, ODELIUS K, HAKKARAINEN M. One-pot synthesis of lignin thermosets exhibiting widely tunable mechanical properties and shape memory behavior[J]. ACS Sustainable Chemistry & Engineering,2019,7(15):13456-13463.
    [93] CORREA C R, OTTO T, KRUSE A. Influence of the biomass components on the pore formation of activated carbon[J]. Biomass & Bioenergy,2017,97:53-64.
    [94] ABIOYE A M, ANI F N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review[J]. Renewable & Sustainable Energy Reviews,2015,52:1282-1293.
    [95] GUO N, LI M, SUN X, et al. Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities[J]. Green Chemistry,2017,19(11):2595-2602. doi: 10.1039/C7GC00506G
    [96] CHATTERJEE S, SAITO T. Lignin-derived advanced carbon materials [J]. ChemSusChem, 2015, 8(23): 3941-3958.
    [97] 张召慧, 吴朝军, 于冬梅, 等. 木质素基吸附剂的研究进展[J]. 中国造纸, 2021, 40(01):106-117.

    ZHANG Zhaohui, WU Chaojun, YU Dongmei, et al. Research progress in the preparation of lignin-based adsorbents[J]. China Pulp & Paper,2021,40(01):106-117(in Chinese).
    [98] CHU S, SUBRAHMANYAM A V, HUBER G W. The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound[J]. Green Chemistry,2013,15(1):125-136. doi: 10.1039/C2GC36332A
    [99] SANGON S, HUNT A J, ATTARD T M, et al. Valorization of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal[J]. Journal of Cleaner Production,2018,172:1128-1139. doi: 10.1016/j.jclepro.2017.10.210
    [100] KIJIMA M, HIRUKAWA T, HANAWA F, et al. Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials[J]. Bioresource Technology,2011,102(10):6279-6285. doi: 10.1016/j.biortech.2011.03.023
    [101] CARROTT P J M, SUHAS, CARROTT M M L R, et al. Reactivity and porosity development during pyrolysis and physical activation in CO2 or steam of kraft and hydrolytic lignins[J]. Journal of Analytical and Applied Pyrolysis,2008,82(2):264-271. doi: 10.1016/j.jaap.2008.04.004
    [102] SUHAS, CARROTT P J M, CARROTT M M L R. Using alkali metals to control reactivity and porosity during physical activation of demineralised kraft lignin[J]. Carbon,2009,47(4):1012-1017. doi: 10.1016/j.carbon.2008.12.001
    [103] GAO Y, YU Q, GAO B, et al. Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption[J]. Chemical Engineering Journal,2013,217:345-353. doi: 10.1016/j.cej.2012.09.038
    [104] SUN Y, YANG G, ZHANG J, et al. Activated carbon preparation from lignin by H3PO4 activation and its application to gas separation[J]. Chemical Engineering & Technology,2012,35(2):309-316.
    [105] GONZALEZ-SERRANO E, CORDERO T, RODRIGUEZ-MIRASOL J, et al. Development of porosity upon chemical activation of kraft lignin with ZnCl2[J]. Industrial & Engineering Chemistry Research,1997,36(11):4832-4838.
    [106] MAHMOUDI K, HAMDI N, KRIAA A, et al. Adsorption of methyl orange using activated carbon prepared from lignin by ZnCl2 treatment[J]. Russian Journal of Physical Chemistry A,2012,86:1294-1300. doi: 10.1134/S0036024412060180
    [107] LIOU T H. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation[J]. Chemical Engineering Journal,2010,158(2):129-142. doi: 10.1016/j.cej.2009.12.016
    [108] YANG J, QIU K. Development of high surface area mesoporous activated carbons from herb residues[J]. Chemical Engineering Journal,2011,167(1):148-154. doi: 10.1016/j.cej.2010.12.013
    [109] SUPANCHAIYAMAT N, JETSRISUPARB K, KNIJNENBURG J T N, et al. Lignin materials for adsorption: Current trend, perspectives and opportunities[J]. Bioresource Technology,2019,272:570-581. doi: 10.1016/j.biortech.2018.09.139
    [110] 曹其平, 周景辉. 木质素基碳纤维研究进展[J]. 中国造纸, 2019, 38(06):79-83.

    CAO Qiping, ZHOU Jinghui. Research progress in lignin-based carbon fibers[J]. China Pulp & Paper,2019,38(06):79-83(in Chinese).
    [111] DERBYSHIRE F, ANDREWS R, JACQUES D, et al. Synthesis of isotropic carbon fibers and activated carbon fibers from pitch precursors[J]. Fuel,2001,80(3):345-356. doi: 10.1016/S0016-2361(00)00099-5
    [112] RAGAUSKAS A J, BECKHAM G T, BIDDY M J, et al. Lignin valorization: Improving lignin processing in the biorefinery[J]. Science,2014,344(6185):1246843. doi: 10.1126/science.1246843
    [113] GUPTA V B. Melt-spinning processes [M]//GUPTA V B, KOTHARI V K. Manufactured fibre technology. Berlin: Springer-Verlag, 1997.
    [114] KUBO S, URAKI Y, SANO Y. Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping[J]. Carbon,1998,36(7-8):1119-1124. doi: 10.1016/S0008-6223(98)00086-4
    [115] DALLMEYER I, KO F, KADLA J F. Correlation of elongational fluid properties to fiber diameter in electrospinning of softwood Kraft lignin solutions[J]. Industrial & Engineering Chemistry Research,2014,53(7):2697-2705.
    [116] LU C, BLACKWELL C, REN Q, et al. Effect of the coagulation bath on the structure and mechanical properties of gel-spun lignin/poly(vinyl alcohol) fibers[J]. ACS Sustainable Chemistry & Engineering,2017,5(4):2949-2959.
    [117] OTANI S, FUKUOKA Y, IGARASHI B, et al. Method for producing carbonized Lignin Fiber: United States Patent, US 3461082DA[P]. 1969-08-12.
    [118] JIN J, OGALE A A. Carbon fibers derived from wet-spinning of equi-component lignin/polyacrylonitrile blends[J]. Journal of Applied Polymer Science,2018,135(8):45903. doi: 10.1002/app.45903
    [119] JANG S, KO S, JEON Y P, et al. Evaluating the stabilization of isotropic pitch fibers for optimal tensile properties of carbon fibers[J]. Journal of Industrial and Engineering Chemistry,2017,45:316-322. doi: 10.1016/j.jiec.2016.09.042
    [120] AKPAN E I, ADEOSUN S O. Sustainable lignin for carbon fibers principles, techniques, and applications [M]. Berlin: Springer, 2019.
    [121] SUDO K, SHIMIZU K. A new carbon fiber from lignin[J]. Journal of Applied Polymer Science,1992,44(1):127-134. doi: 10.1002/app.1992.070440113
    [122] URAKI Y, KUBO S, NIGO N, et al. Preparation of carbon fibers from organosolv lignin obtained by aqueous acetic acid pulping[J]. Holzforschung,1995,49(4):343-350. doi: 10.1515/hfsg.1995.49.4.343
    [123] BAKER D A, GALLEGO N C, BAKER F S. On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber[J]. Journal of Applied Polymer Science,2012,124(1):227-234. doi: 10.1002/app.33596
    [124] NORBERG I, NORDSTRÖM Y, DROUGGE R, et al. A new method for stabilizing softwood kraft lignin fibers for carbon fiber production[J]. Journal of Applied Polymer Science,2013,128(6):3824-3830. doi: 10.1002/app.38588
    [125] ZHANG M, OGALE A A. Carbon fibers from dry-spinning of acetylated softwood kraft lignin[J]. Carbon,2014,69:626-629. doi: 10.1016/j.carbon.2013.12.015
    [126] XIA K, OUYANG Q, CHEN Y, et al. Preparation and characterization of lignosulfonate–acrylonitrile copolymer as a novel carbon fiber precursor[J]. ACS Sustainable Chemistry & Engineering,2016,4(1):159-168.
    [127] NIRMALE T C, KALE B B, VARMA A J. A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery[J]. International Journal of Biological Macromolecules,2017,103:1032-1043. doi: 10.1016/j.ijbiomac.2017.05.155
    [128] ESPINOZA-ACOSTA J, TORRES-CHÁVEZ P, OLMEDO-MARTÍNEZ J L, et al. Lignin in storage and renewable energy applications: A review[J]. Journal of Energy Chemistry,2018,27(5):1422-1438. doi: 10.1016/j.jechem.2018.02.015
    [129] LAI C, ZHOU Z, ZHANG L, et al. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors[J]. Journal of Power Sources,2014,247:134-141. doi: 10.1016/j.jpowsour.2013.08.082
    [130] SAHA D, LI Y, BI Z, et al. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon[J]. Langmuir,2014,30(3):900-910. doi: 10.1021/la404112m
    [131] HU S, ZHANG S, PAN N, et al. High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes[J]. Journal of Power Sources,2014,270:106-112. doi: 10.1016/j.jpowsour.2014.07.063
    [132] CHEN F, ZHOU W, YAO H, et al. Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications[J]. Green Chemistry,2013,15(11):3057-3063. doi: 10.1039/c3gc41080c
    [133] MILCZAREK G, NOWICKI M. Carbon nanotubes/kraft lignin composite: Characterization and charge storage properties[J]. Materials Research Bulletin,2013,48(10):4032-4038. doi: 10.1016/j.materresbull.2013.06.022
    [134] YE R, CHYAN Y, ZHANG J, et al. Laser-induced graphene formation on wood[J]. Advanced Materials,2017,29(37):1702211. doi: 10.1002/adma.201702211
    [135] ZHANG W, LEI Y, MING F, et al. Lignin laser lithography: A direct-write method for fabricating 3D graphene electrodes for microsupercapacitors[J]. Advanced Energy Materials,2018,8(27):1801840. doi: 10.1002/aenm.201801840
    [136] WANG S, YANG L, STUBBS L P, et al. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries[J]. ACS Applied Materials & Interfaces,2013,5(23):12275-12282.
    [137] TENHAEFF W E, RIOS O, MORE K, et al. Highly robust lithium ion battery anodes from lignin: An abundant, renewable, and low-cost material[J]. Advanced Functional Materials,2014,24(1):86-94. doi: 10.1002/adfm.201301420
    [138] JIN J, YU S, SHI Z, et al. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries[J]. Journal of Power Sources,2014,272:800-807. doi: 10.1016/j.jpowsour.2014.08.119
    [139] YABUUCHIHTTP N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews,2014,114(23):11636-11682. doi: 10.1021/cr500192f
    [140] LI Y, HU Y, LI H, et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. Journal of Materials Chemistry A,2016,4(1):96-104.
    [141] LIN X, LIU Y, TAN H, et al. Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage[J]. Carbon,2020,157:316-323. doi: 10.1016/j.carbon.2019.10.045
    [142] MINTZ K J, ZHOU Y, LEBLANC R M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure[J]. Nanoscale,2019,11(11):4634-4652. doi: 10.1039/C8NR10059D
    [143] DAS R, BANDYOPADHYAY R, PRAMANIK P. Carbon quantum dots from natural resource: A review[J]. Materials Today Chemistry,2018,8:96-109. doi: 10.1016/j.mtchem.2018.03.003
    [144] ZHAO S, CHEN X, ZHANG C, et al. Fluorescence enhancement of lignin-based carbon quantum dots by concentration-dependent and electron-donating substituent synergy and their cell imaging applications[J]. ACS Applied Materials & Interfaces,2021,13(51):61565-61577.
    [145] LIU W, NING C, SANG R, et al. Lignin-derived graphene quantum dots from phosphous acid-assisted hydrothermal pretreatment and their application in photocatalysis[J]. Industrial Crops & Products,2021,171:113963.
    [146] CHAO W, LI Y, SUN X. Enhanced wood-derived photothermal evaporation system by in-situ incorporated lignin carbon quantum dots[J]. Chemical Engineering Journal,2021,405:126703. doi: 10.1016/j.cej.2020.126703
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1539
  • HTML全文浏览量:  1212
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-19
  • 修回日期:  2022-02-25
  • 录用日期:  2022-03-15
  • 网络出版日期:  2022-03-22
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回