留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP管面钻削缺陷形成机制

邱新义 李鹏南 牛秋林 李树健 李常平 唐玲艳

邱新义, 李鹏南, 牛秋林, 等. CFRP管面钻削缺陷形成机制[J]. 复合材料学报, 2023, 40(1): 141-150. doi: 10.13801/j.cnki.fhclxb.20220315.001
引用本文: 邱新义, 李鹏南, 牛秋林, 等. CFRP管面钻削缺陷形成机制[J]. 复合材料学报, 2023, 40(1): 141-150. doi: 10.13801/j.cnki.fhclxb.20220315.001
QIU Xinyi, LI Pengnan, NIU Qiulin, et al. Formation mechanism of drilling defects on CFRP pipe surface[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 141-150. doi: 10.13801/j.cnki.fhclxb.20220315.001
Citation: QIU Xinyi, LI Pengnan, NIU Qiulin, et al. Formation mechanism of drilling defects on CFRP pipe surface[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 141-150. doi: 10.13801/j.cnki.fhclxb.20220315.001

CFRP管面钻削缺陷形成机制

doi: 10.13801/j.cnki.fhclxb.20220315.001
基金项目: 国家自然科学基金(52105442;51775184;51975208);湖南科技大学科研启动基金(E52078)
详细信息
    通讯作者:

    李鹏南,博士,教授,博士生导师,研究方向为难加工材料切削加工 E-mail: lpn2002@163.com

  • 中图分类号: TB332

Formation mechanism of drilling defects on CFRP pipe surface

Funds: National Natural Science Foundation of China (52105442; 51775184; 51975208); Scientific Research Initiation Fund of Hunan University of Science and Technology (E52078)
  • 摘要: 碳纤维增强复合材料 (CFRP)传动轴因性能优越广泛应用于汽车、航空航天、船舶、冷却塔风机等轻量化领域,但其钻削过程中容易出现毛刺、分层等缺陷。为了揭示CFRP管面钻削缺陷形成机制,选择双锋角钻头和三尖二刃钻对CFRP管面钻孔,利用分步钻削盲孔和通孔的方法,分析了损伤部位的受力情况,揭示了入口撕裂、出口毛刺和分层产生原因。根据实验结果,发现双锋角钻头钻孔时入口撕裂损伤较大,损伤位置在钻头与管面接触最低点,且主要是那部分水平缠绕CFRP管的纤维,原因是水平缠绕的纤维屈曲变形最大,对切削力更加敏感。双锋角钻头和三尖二刃钻的横刃对孔最终出口分层没有影响,主切削刃的切削行为决定孔最终出口分层。相同钻头钻孔时,轴向力不是唯一影响分层因子的因素,还需考虑切削热。相比双锋角钻头,三尖二刃钻因锋利的外缘尖角能有效划断纤维,使出口分层较小。

     

  • 图  1  设备及刀具结构

    Figure  1.  Equipment and tool structure

    Φ—Diameter

    图  2  碳纤维增强复合材料(CFRP)管面钻削入口示意图

    Figure  2.  Schematic diagram of carbon fiber reinforced polymer (CFRP) tube surface drilling entry

    LA—Cutting length at section A; LB—Cutting length at section B

    图  3  双锋角钻头和三尖二刃钻头的轴向力时变曲线对比(主轴转速n=3500 r/min,进给量f=0.02 mm/r)

    Figure  3.  Comparison of thrust force time-varying curves of double point angle drill and candle stick drill (Spindle speed n=3500 r/min, feed rate f=0.02 mm/r)

    图  4  双锋角钻头钻削阶段示意图

    Figure  4.  Schematic diagram of drilling stages of double point angle drill

    图  5  三尖二刃钻头钻削阶段示意图

    Figure  5.  Schematic diagram of drilling stages of candle stick drill

    图  6   双锋角钻头和三尖二刃钻头的轴向力对比

    Figure  6.  Comparison of thrust force between double point angle drill and candle stick drill

    图  7  两种钻头钻削CFRP管面入口损伤形成过程(n=3500 r/min、f=0.02 mm/r)

    Figure  7.  CFRP tube surface entry damage formation process of two kinds of drills (n=3500 r/min, f=0.02 mm/r)

    d—Drilling depth

    图  8  双锋角钻头切入CFRP管面受力示意图

    Figure  8.  Stress diagram of double point angle drill cutting into CFRP pipe surface

    Fx, Fy, Fz, Fc—Component force; Fn, Fs—Resultant force

    图  9  三尖二刃钻切入CFRP管面示意图

    Figure  9.  Diagram of candle stick drill cutting into CFRP pipe surface

    v—Cutting speed; θ—Fiber cutting angle

    图  10  双锋角钻头钻削CFRP管面出口损伤形成过程 (n=3500 r/min、f=0.02 mm/r)

    Figure  10.  Formation process of CFRP tube surface damage at drilling exit of double point angle drill (n=3500 r/min, f=0.02 mm/r)

    Dnorm—Nominal diameter of the hole; Dmax—Maximum damage diameter; w—Direction of rotation; L1—Line

    图  11  不同θ时刀具与纤维的接触状态

    Figure  11.  Contact state between cutting edge and fiber during at different θ

    图  12  CFRP管面B截面形貌 (n=3500 r/min、f=0.02 mm/r)

    Figure  12.  B section morphologies of CFRP tube surface (n=3500 r/min, f=0.02 mm/r)

    图  13  三尖二刃钻钻削CFRP管面出口损伤形成过程 (n=3500 r/min、f=0.02 mm/r)

    Figure  13.  Formation process of CFRP tube surface damage at drilling exit of candle stick drill (n=3500 r/min, f=0.02 mm/r)

    图  14  两种钻头在不同切削参数下的分层因子Fd对比

    Figure  14.  Comparisons of delamination factor Fd between two kinds of drill bits under different cutting parameters

    图  15  CFRP管面底层材料变形示意图

    Figure  15.  Deformation diagram of CFRP tube surface bottom material

    表  1  T700 性能参数

    Table  1.   T700 performance parameters

    PropertiesParameters
    Coefficient of thermal expansion/°C−1−0.38×10−6
    Thermal conductivity/(W·(m·K)−1)9.35
    Density/(g·cm−3)1.80
    Elongation/%2.1
    Tensile strength/MPa4900
    Tensile modulus/GPa230
    Single beam intensity/(g·1000 m−1)800
    下载: 导出CSV
  • [1] YAZMAN S. The effects of back-up on drilling machinability of filament wound GFRP composite pipes: Mechanical characterization and drilling tests[J]. Journal of Manufacturing Processes,2021,68:1535-1552. doi: 10.1016/j.jmapro.2021.06.054
    [2] 常燕, 朱涛, 孙士祥, 等. 复合材料传动轴的应用及技术研究进展[J]. 工程塑料应用, 2020, 48(7):154-157. doi: 10.3969/j.issn.1001-3539.2020.07.029

    CHANG Yan, ZHU Tao, SUN Shixiang, et al. Application and advance in technology research of composite drive shaft[J]. Engineering Plastics Application,2020,48(7):154-157(in Chinese). doi: 10.3969/j.issn.1001-3539.2020.07.029
    [3] 孙泽玉, 高洪平, 余许多, 等. 连接件对碳纤维复合材料汽车传动轴振动性能的影响[J]. 复合材料科学与工程, 2020(3):80-83. doi: 10.3969/j.issn.1003-0999.2020.03.013

    SUN Zeyu, GAO Hongping, YU Xuduo, et al. Effect of connectors on natural frequency in carbon fiber composite drive shaft of automobile[J]. Composites Science and Engineering,2020(3):80-83(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.03.013
    [4] 郭东明. 高性能精密制造[J]. 中国机械工程, 2018, 29(7):757-765. doi: 10.3969/j.issn.1004-132X.2018.07.001

    GUO Dongming. High-performance precision manufacturing[J]. China Mechanical Engineering,2018,29(7):757-765(in Chinese). doi: 10.3969/j.issn.1004-132X.2018.07.001
    [5] 赵文辉, 张伟东, 段振云, 等. 基于分层损伤分析的碳纤维增强树脂复合材料-金属传动轴扭转性能[J]. 复合材料学报, 2021, 38(5):1476-1486.

    ZHAO Wenhui, ZHANG Weidong, DUAN Zhenyun, et al. Torsion properties of carbon fiber reinforced polymer composite-metal transmission shaft based on delamination damage analysis[J]. Acta Materiae Compositae Sinica,2021,38(5):1476-1486(in Chinese).
    [6] 张厚江. 碳纤维复合材料(CFRP)钻削加工技术的研究[D]. 北京: 北京航空航天大学, 1998.

    ZHANG Houjiang. Study on the drilling technology of CFRP[D]. Beijing: Beijing University of Aeronautics and Astronautics, 1998(in Chinese).
    [7] 鲍永杰. C/E复合材料制孔缺陷成因与高效制孔技术[D]. 大连: 大连理工大学, 2010.

    BAO Yongjie. Researches on the formation mechanism of disfigurements and the high-efficiency techniques of drilling C/E composite[D]. Dalian: Dalian University of Technology, 2010(in Chinese).
    [8] DAVIM J P, REIS P. Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments[J]. Composite Structures,2003,59(4):481-487. doi: 10.1016/S0263-8223(02)00257-X
    [9] SU F, DENG Z, SUN F, et al. Comparative analyses of damages formation mechanisme for novel drills based on a new drill-induced damages analytical model[J]. Journal of Materials Processing Technology,2019,271:111-125.
    [10] TSAO C C, HOCHENG H. Computerized tomography and C-Scan for measuring delamination in the drilling of composite materials using various drills[J]. International Journal of Machine Tools and Manufacture,2005,45(11):1282-1287. doi: 10.1016/j.ijmachtools.2005.01.009
    [11] 章伟, 黄威武, 罗胜, 等. 钻削参数对碳纤维复合材料孔加工质量的影响[J]. 硬质合金, 2016, 33(4):255-262.

    ZHANG Wei, HUANG Weiwu, LUO Sheng, et al. Effects of drilling parameters on hole quality of carbon fiber composite[J]. Cemented Carbide,2016,33(4):255-262(in Chinese).
    [12] ZADAFIYA K, BANDHU D, KUMARI S, et al. Recent trends in drilling of carbon fiber reinforced polymers (CFRPs): A state-of-the-art review[J]. Journal of Manufacturing Processes,2021,69:47-68. doi: 10.1016/j.jmapro.2021.07.029
    [13] ÇELIK A, LAZOGLU I, KARA A, et al. Investigation on the performance of SiAION ceramic drills on aerospace grade CFRP composites[J]. Journal of Materials Processing Technology,2015,223:39-47. doi: 10.1016/j.jmatprotec.2015.03.040
    [14] KARPAT Y, BAHTIYAR O. Tool geometry based prediction of critical thrust force while drilling carbon fiber reinforced polymers[J]. Advances in Manufacturing,2015,3(4):300-308. doi: 10.1007/s40436-015-0129-y
    [15] KARPAT Y, DEGER B, BAHTIYAR O. Drilling thick fabric woven CFRP laminates with double point angle drills[J]. Journal of Materials Processing Technology,2012,212(10):2117-2127. doi: 10.1016/j.jmatprotec.2012.05.017
    [16] GRILO T J, PAULO R M F, SILVA C R M, et al. Experimental delamination analyses of CFRPs using different drill geometries[J]. Composites Part B: Engineering,2013,45(1):1344-1350. doi: 10.1016/j.compositesb.2012.07.057
    [17] FEITO N, DÍAZ-ÁLVAREZ J, LOPEZ-PUENTE J, et al. Experimental and numerical analysis of step drill bit performance when drilling woven CFRPs[J]. Composite Structures,2018,184:1147-1155. doi: 10.1016/j.compstruct.2017.10.061
    [18] QIU X, LI P, LI C, et al. Study on chisel edge drilling behavior and step drill structure on delamination in drilling CFRP[J]. Composite Structures,2018,203:404-413. doi: 10.1016/j.compstruct.2018.07.007
    [19] QIU X, LI P, LI C, et al. New compound drill bit for damage reduction in drilling CFRP[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2019,6:75-87. doi: 10.1007/s40684-019-00026-3
    [20] SU F, ZHENG L, SUN F, et al. Novel drill bit based on the step-control scheme for reducing the CFRP delamination[J]. Journal of Materials Processing Technology,2018,262:157-167. doi: 10.1016/j.jmatprotec.2018.06.037
    [21] GEMI L, MORKAVUK S, KOKLU U, et al. An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation[J]. Composites Part B: Engineering,2019,172:186-194. doi: 10.1016/j.compositesb.2019.05.023
    [22] GEMI L, KOKLU U, YAZMAN S, et al. The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-1 — Mechanical characterization and drilling tests[J]. Composites Part B: Engineering,2020,186:107787. doi: 10.1016/j.compositesb.2020.107787
    [23] GEMI L, MORKAVUK S, KOKLU U, et al. The effects of stacking sequence on drilling machinability of filament woundhybrid composite pipes: Part-2 Damage analysis and surface quality[J]. Composite Structures,2020,235:111737. doi: 10.1016/j.compstruct.2019.111737
    [24] DEHGHAN M S P, HEIDARY H. Parametric study on drilling of GFRP composite pipe produced by filament winding process in different backup condition[J]. Composite Structures,2020,234:111661. doi: 10.1016/j.compstruct.2019.111661
    [25] 邱新义. 碳纤维增强复合材料钻削的切削刃作用机制及低缺陷制孔钻头研究[D]. 湘潭: 湖南科技大学, 2019.

    QIU Xinyi. Study on mechanism of cutting edge and low defect hole making drill for drilling carbon fiber reinforecd plastics[D]. Xiangtan: Hunan University of Science and Technology, 2019(in Chinese).
    [26] KRISHNARAJ V, PRABUKARTHI A, RAMANATHAN A, et al. Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates[J]. Composites Part B: Engineering, 2012, 43(4): 1791-1799.
    [27] KHASHABA U A, ABD-ELWAHED M S, NAJJAR I, et al. Heat affected zone and mechanical analysis of GFRP composites with different thickness in drilling processes[J]. Polymers, 2021, 13(14): 2246.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  452
  • HTML全文浏览量:  179
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 修回日期:  2022-02-07
  • 录用日期:  2022-03-08
  • 网络出版日期:  2022-03-17
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回