留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热塑性复合材料夹芯结构熔融连接研究进展

杜冰 刘后常 潘鑫 秦唯铭 陈立明

杜冰, 刘后常, 潘鑫, 等. 热塑性复合材料夹芯结构熔融连接研究进展[J]. 复合材料学报, 2022, 39(7): 3044-3058. doi: 10.13801/j.cnki.fhclxb.20220228.001
引用本文: 杜冰, 刘后常, 潘鑫, 等. 热塑性复合材料夹芯结构熔融连接研究进展[J]. 复合材料学报, 2022, 39(7): 3044-3058. doi: 10.13801/j.cnki.fhclxb.20220228.001
DU Bing, LIU Houchang, PAN Xin, et al. Progress in fusion bonding of thermoplastic composite sandwich structures[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3044-3058. doi: 10.13801/j.cnki.fhclxb.20220228.001
Citation: DU Bing, LIU Houchang, PAN Xin, et al. Progress in fusion bonding of thermoplastic composite sandwich structures[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3044-3058. doi: 10.13801/j.cnki.fhclxb.20220228.001

热塑性复合材料夹芯结构熔融连接研究进展

doi: 10.13801/j.cnki.fhclxb.20220228.001
基金项目: 国家自然科学基金(11972096);重庆英才计划“包干制”项目(cstc2021ycjh-bgzxm0117);重庆市自然科学基金面上项目(cstc2020jcyj-msxmX0559);重庆市教育委员会科学技术研究项目(KJQN202101531)
详细信息
    通讯作者:

    陈立明,博士,教授,博士生导师,研究方向为轻质复合材料结构力学 E-mail: clm07@cqu.edu.cn

  • 中图分类号: TB332

Progress in fusion bonding of thermoplastic composite sandwich structures

  • 摘要: 面芯界面性能是复合材料夹芯结构发挥其力学/多功能优势的关键,热塑性树脂具有可熔融再造的特点,使热塑性复合材料夹芯结构(TPCSS)可在不引入新材料的前提下,形成连续可靠的面芯界面。对近年来热塑性复合材料夹芯结构熔融连接研究进展进行了梳理,总结了常见构型与所用材料,重点归纳了主要的熔融连接方法,包括热板焊接、模压成型、连续热压、面芯共编和增材制造等。基于国内外研究和应用现状,展望了熔融连接热塑性复合材料夹芯结构的未来发展趋势和应用前景。

     

  • 图  1  常见夹芯结构构型

    Figure  1.  Common core configurations of sandwich structure

    图  3  常见的热塑性复合材料夹芯结构熔融连接方法

    Figure  3.  Common fusion bonding methods of thermoplastic composite sandwich structure

    TPC—Thermoplastic composite; TP—Thermoplastic

    图  2  熔融连接原理[26]

    Figure  2.  Process of fusion bonding[26]

    图  4  热板焊接制备的自增强聚对苯二甲酸乙二醇酯(SrPET)金字塔夹芯结构[12]

    Figure  4.  Fabricated Self reinforcing polyethylene terephthalate (SrPET) pyramidal sandwich structure[12]

    图  5  层级热塑性复合材料波纹夹芯结构[49]:(a) 工艺路径;(b) 所制备的试件;(c) 连接处

    Figure  5.  Hierarchical corrugation TPC sandwich structure[49]: (a) Fabrication process; (b) Fabricated specimen; (c) Details in bonding area

    图  6  玻璃纤维增强聚丙烯(GF/PP)波纹夹芯板制备流程图[13]

    Figure  6.  Fabrication route of glass fiber reinforced polypropylene (GF/PP) corrugated sandwich panel[13]

    PETF—Polytetrafluoroethylene; CNC—Computer numerical control

    图  7  模内发泡方法:(a) 注塑发泡[17];(b) 薄膜发泡[51]

    Figure  7.  In-mould foaming methods: (a) Injection foaming[17]; (b) Film foaming[51]

    图  8  SrPET复合材料波纹夹芯结构面芯共固结:(a) 芯层间断铺层[11];(b) 芯层连续铺层[44];(c) 缝合增强[45]

    Figure  8.  SrPET composite corrugated sandwich facesheet/core co-curing: (a) Non-continuous layup in core[11]; (b) Continuous layup in core[44]; (c) Continuous layup with stitching reinforcement[45]

    图  9  CF/PEEK金字塔夹芯结构面芯连接方法[27]:(a) 胶粘连接;(b) 原为热压

    Figure  9.  Facesheet/core connection methods of CF/PEEK pyramidal sandwich structure[27]: (a) Adhesive connection; (b) In-suit hot-pressing

    图  10  所制备的SrPP结构[15]:(a) 波纹芯层;(b)夹芯板;(c) 胞元;(d) 连接处光学显微镜照片

    Figure  10.  Fabricated structures of SrPET[15]: (a) Corrugated core; (b) Sandwich panel; (c) Unit cell; (d) Optical microscope image

    图  11  GF/PP复合材料蜂窝夹芯结构[37]:(a) 面芯铺层方案;(b) 制备流程图

    Figure  11.  GF/PP honeycomb sandwich structure[37]: (a) Layup of facesheet; (b) Fabrication process

    图  12  (a) 热塑性复合材料泡沫夹芯结构制备示意图[17];(b) 热塑性复合材料泡沫芯层增强示意图[34]

    Figure  12.  (a) Manufacturing process of thermoplastic composite sandwich adapted to the Thermabond® principle[17]; (b) Thermoplastic composite foam reinforcement concept[34]

    Tcore center—Core temperature at the center; Tcore surface—Core temperature at the surface; Tg, core—Glass transition tempera-ture of core; Tg, TP enrichment—Glass transition temperature of thermoplastic enrichment; TSkin—Temperature of skin; Tm, composite—Melting temperature of composite

    图  13  ThermHex®蜂窝结构制备示意图[40]:(a) 胞元非闭合;(b) 胞元闭合

    Figure  13.  Fabrication process of ThermHex®[40]: (a) Open cell; (b) Close cell

    图  14  (a) 制件与可拆卸芯模[41];(b) 销钉导向剪力机构[52];(c) 曲面结构成型模具[52]

    Figure  14.  (a) Specimens and detachable core mould[41]; (b) Scissor mechanism for pin guidance[52]; (c) Metal plate mold for single curved structures[52]

    图  15  (a)路径设计[29];(b)波纹截面[48];(c) 3D打印过程[48];(d) 3D打印制备的CF/PEEK波纹夹芯结构[48]

    Figure  15.  (a) Path design[29]; (b) Corrugation section[48]; (c) 3D printing process[48]; (d) 3D-printed CF/PEEK corrugation sandwich structure[48]

    图  16  脱粘夹芯试样[57]:(a) 双悬臂梁(DCB);(b) 混合模式弯曲(MMB);(c) 含裂纹夹芯梁(CSB);(d) 双悬臂梁-非均匀弯矩(DCB-UBM)

    Figure  16.  Debond sandwich test specimen[57]: (a) Double cantilever beam (DCB); (b) Mixed mode bending (MMB); (c) Cracked sandwich beam (CSB); (d) Double cantilever beam-uneven bending moment (DCB-UBM)

    图  17  (a)侧压载荷位移曲线对比;(b)热板焊接波纹夹芯结构失效模式;(c)电阻焊接波纹夹芯结构失效模式

    Figure  17.  (a) Load-displacement curve of edgewise compression results; (b) The failure mode of hot plate bonding TPCSS; (c) The failure mode of resistance welding TPCSS

    图  18  (a)可变形副翼[57-59];(b)车用地板[60];(c) 风电叶片[61]

    Figure  18.  (a) Morphing wing[57-59]; (b) Composite floor for electric vehicles[60]; (c) Wind blade[61]

    图  19  风电叶片各部分电阻焊接示意图[65]

    Figure  19.  Resistance welding schematic for a wind turbine blaed[65]

    表  1  采用熔融连接的热塑性复合材料夹芯结构构型与材料概览

    Table  1.   Brief summary of the core configuration and material of TPC sandwich structures

    YearCore configurationMatrixReinforcementRef.
    2007FoamPP[30]
    2018FoamEPP[31]
    2019FoamPEI[32]
    2020FoamPEI[33]
    2003HoneycombPP[34]
    2019HoneycombPP[35]
    2020HoneycombPP[36]
    2020HoneycombPP[37]
    2021HoneycombPLACF-U[38]
    2021HoneycombPLACF-U[39]
    2015Pyramidal trussPETPET-F[12]
    2020Pyramidal trussPEEKCF-U[27]
    2013CorrugationPPGF-U[40]
    2013CorrugationPPGF-U[41]
    2015CorrugationPPGF-U[42]
    2016CorrugationPETPET-F[43]
    2017CorrugationPPGF-U[13]
    2020CorrugationPPGF-U[15]
    2015CorrugationPETPET-F[11]
    2016CorrugationPETPET-F[44]
    2016CorrugationPETPET-F[45]
    2018CorrugationPPPP-F[12]
    2021CorrugationPPPP-F[32]
    2021CorrugationPPPP-F[46]
    2018CorrugationPLAKevlar-U[29]
    2019CorrugationPPGF-U[47]
    2019CorrugationPEEKCF-U[48]
    Notes: "-U "—Unidirectional fiber; "-F "—Woven fiber; CF—Carbon fiber; GF—Glass fiber; PET—Polyethylene terephthalate; PP—Polypropylene; PA—Polyamide; PEEK—Polyetheretherketon; EPP—Foamed polypropylene; PEI—Polyetherimide.
    下载: 导出CSV
  • [1] 吴林志, 熊健, 马力, 等. 新型复合材料点阵结构的研究进展[J]. 力学进展, 2012, 42(1):41-67. doi: 10.6052/1000-0992-2012-1-lxjzJ2011-095

    WU Linzhi, XIONG Jian, MA Li, et al. Processes in the study on novel composite sandwich panels with lattice truss cores[J]. Advances in Mechanics,2012,42(1):41-67(in Chinese). doi: 10.6052/1000-0992-2012-1-lxjzJ2011-095
    [2] 熊健, 杜昀桐, 杨雯, 等. 轻质复合材料夹芯结构设计及力学性能最新进展[J]. 宇航学报, 2020, 41(6):749-760.

    XIONG Jian, DU Yutong, YANG Wen, et al. Research progress on design and mechanical properties of lightweight composite sandwich structures[J]. Journal of Astronautics,2020,41(6):749-760(in Chinese).
    [3] BIRMAN V, KARDOMATEAS G A. Review of current trends in research and applications of sandwich structures[J]. Composites Part B: Engineering,2018,142:221-240. doi: 10.1016/j.compositesb.2018.01.027
    [4] 孙银宝, 李宏福, 张博明. 连续纤维增强热塑性复合材料研发与应用进展[J]. 航空科学技术, 2016, 27(5):1-7.

    SUN Yinbao, LI Hongfu, ZHANG Boming. Progress in research and application of continuous fiber reinforced thermoplastic composites[J]. Aeronautical Science & Technology,2016,27(5):1-7(in Chinese).
    [5] XIONG J, DU Y, MOUSANEZHAD D, et al. Sandwich structures with prismatic and foam cores: A review[J]. Advanced Engineering Materials,2019,21(1):1800036. doi: 10.1002/adem.201800036
    [6] WEI X Y, XIONG J, WANG J, et al. New advances in fiber-reinforced composite honeycomb materials[J]. Science China Technological Sciences,2020,63(8):1348-1370.
    [7] XU G D, WANG Z H, ZENG T, et al. Mechanical response of carbon/epoxy composite sandwich structures with three-dimensional corrugated cores[J]. Composites Science and Technology,2018,156:296-304. doi: 10.1016/j.compscitech.2018.01.015
    [8] WU Q Q, MA L, WU L Z, et al. A novel strengthening method for carbon fiber composite lattice truss structures[J]. Composite Structures,2016,153:585-592. doi: 10.1016/j.compstruct.2016.06.060
    [9] BUDHE S, BANEA M D, DE BARROS S, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion and Adhesives,2017,72:30-42. doi: 10.1016/j.ijadhadh.2016.10.010
    [10] GRÜNEWALD J, PARLEVLIET P, ALTSTÄDT V. Manufacturing of thermoplastic composite sandwich structures: A review of literature[J]. Journal of Thermoplastic Composite Materials,2017,30(4):437-464. doi: 10.1177/0892705715604681
    [11] SCHNEIDER C, KAZEMAHVAZI S, ZENKERT D, et al. Dynamic compression response of self-reinforced poly (ethylene terephthalate) composites and corrugated sandwich cores[J]. Composites Part A: Applied Science and Manufacturing,2015,77:96-105. doi: 10.1016/j.compositesa.2015.06.016
    [12] SCHNEIDER C, VELEA M N, KAZEMAHVAZI S, et al. Compression properties of novel thermoplastic carbon fibre and poly-ethylene terephthalate fibre composite lattice structures[J]. Materials & Design,2015,65:1110-1120.
    [13] DU B, CHEN L M, ZHOU H, et al. Fabrication and flatwise compression property of glass fiber-reinforced Polypropylene corrugated sandwich panel[J]. International Journal of Applied Mechanics,2017,9(8):1750110. doi: 10.1142/S1758825117501101
    [14] CHEN L M, PENG S W, LIU J, et al. Compressive response of multi-layered thermoplastic composite corrugated sandwich panels: Modelling and experiments[J]. Composites Part B: Engineering,2020,189:107899. doi: 10.1016/j.compositesb.2020.107899
    [15] IMRAN A, QI S, YAN C, et al. Dynamic compression response of self-reinforced polypropylene composite structures fabricated through ex-situ consolidation process[J]. Composite Structures,2018,204:288-300. doi: 10.1016/j.compstruct.2018.07.085
    [16] DU B, CHEN L, TAN J, et al. Fabrication and bending behavior of thermoplastic composite curved corrugated sandwich beam with interface enhancement[J]. International Journal of Mechanical Sciences,2018,149:101-111. doi: 10.1016/j.ijmecsci.2018.09.049
    [17] GRÜNEWALD J. Thermoplastic composite sandwiches for structural avaition applications[D]. Bayreuth: Universität Bayreuth, 2018.
    [18] XIONG J, MA L, PAN S, et al. Shear and bending performance of carbon fiber composite sandwich panels with pyramidal truss cores[J]. Acta Materialia,2012,60(4):1455-1466. doi: 10.1016/j.actamat.2011.11.028
    [19] JIN F, CHEN H, ZHAO L, et al. Failure mechanisms of sandwich composites with orthotropic integrated woven corrugated cores: experiments[J]. Composite Structures,2013,98:53-58. doi: 10.1016/j.compstruct.2012.09.056
    [20] 方岱宁, 张一慧, 崔晓东. 轻质点阵材料力学与多功能设计[M]. 北京: 科学出版社, 2009.

    FANG Daining, ZHANG Yihui, CUI Xiaodong. Mechanical and multi-functional design of lightweight lattice material[M]. Beijing: Science Press, 2009(in Chinese).
    [21] WADLEY H N G. Multifunctional periodic cellular metals[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2006,364(1838):31-68. doi: 10.1098/rsta.2005.1697
    [22] LOOS A C, LI M C. Non-isothermal autohesion model for amorphous thermoplastic composites[J]. Journal of Thermoplastic Composite Materials,1994,7(4):280-310. doi: 10.1177/089270579400700401
    [23] AGEORGES C, YE L. Fusion bonding of polymer compo-sites: From basic mechanisms to process optimisation[M]. Berlin: Springer, 2002.
    [24] REIS J P, De MOURA M, SAMBORSKI S. Thermoplastic composites and their promising applications in joining and repair composites structures: A review[J]. Materials,2020,13(24):5832. doi: 10.3390/ma13245832
    [25] XIONG X, WANG D, WEI J, et al. Resistance welding technology of fiber reinforced polymer composites: A review[J]. Journal of Adhesion Science and Technology,2021,35(15):1593-1619.
    [26] 雷红帅, 赵则昂, 郭晓岗, 等. 航天器轻量化多功能结构设计与制造技术研究进展[J]. 宇航材料工艺, 2021, 51(4):10-22. doi: 10.12044/j.issn.1007-2330.2021.04.002

    LEI Hongshuai, ZHAO Zeang, GUO Xiaogang, et al. Research progress on the design and manufacture technology of lightweight multifunctional spacecraft structures[J]. Aerospace Materials & Technology,2021,51(4):10-22(in Chinese). doi: 10.12044/j.issn.1007-2330.2021.04.002
    [27] HU J, LIU A, ZHU S, et al. Novel panel-core connection process and impact behaviors of CF/PEEK thermoplastic composite sandwich structures with truss cores[J]. Composite Structures,2020,251:112659. doi: 10.1016/j.compstruct.2020.112659
    [28] MOUNTASIR A, HOFFMANN G, CHERIF C, et al. Competitive manufacturing of 3D thermoplastic composite panels based on multi-layered woven structures for lightweight engineering[J]. Composite Structures,2015,133:415-424. doi: 10.1016/j.compstruct.2015.07.071
    [29] HOU Z, TIAN X, ZHANG J, et al. 3D printed continuous fibre reinforced composite corrugated structure[J]. Composite Structures,2018,184:1005-1010. doi: 10.1016/j.compstruct.2017.10.080
    [30] SPÖRRER A N J, ALTSTÄDT V. Controlling morphology of injection molded structural foams by mold design and processing parameters[J]. Journal of Cellular Plastics,2007,43(4-5):313-330. doi: 10.1177/0021955X07079043
    [31] NEUMEYER T, SCHREIER P and KNOECHEL J. Thermoplastic sandwich structures with bead foam core-novel processing approaches[C]. In: 12th international conference on sandwich structures. Lausanne, 2018.
    [32] IMRAN A, QI S, SHI P, et al. Effect of core corrugation angle on static compression of self-reinforced PP sandwich panels and bending energy absorption of sandwich beams[J]. Journal of Composite Materials,2021,55(7):897-914. doi: 10.1177/0021998320960531
    [33] FITS Technology. Technical data FITS PEI[DB/OL]. http://fits-technology.com/technicaldata.html (2022, accessed 21 February 2022).
    [34] GRÜNEWALD J, ORTH T, PARLEVLIET P, et al. Modified foam cores for full thermoplastic composite sandwich structures[J]. Journal of Sandwich Structures & Materials,2019,21(3):1150-1166.
    [35] 孙雅杰, 范欣愉, 秦永利, 等. 热塑性蜂窝夹芯板的制备和性能研究[J]. 合成材料老化与应用, 2019, 48(5):9-12.

    SUN Yajie, FAN Xinyu, QIN Yongli, et al. Research of preparation and properties of thermoplastic honeycomb sandwich panel[J]. Synthetic Materials Aging and Application,2019,48(5):9-12(in Chinese).
    [36] 丁先锋, 杨桂生. 热塑性PP蜂窝夹层结构复合材料制备和性能[J]. 工程塑料应用, 2020, 48(4):118-122. doi: 10.3969/j.issn.1001-3539.2020.04.020

    DING Xianfeng, YANG Guisheng. Preparation and properties of thermoplastic PP honeycomb sandwich structure composites[J]. Engineering Plastics Application,2020,48(4):118-122(in Chinese). doi: 10.3969/j.issn.1001-3539.2020.04.020
    [37] GAO X, ZHANG M, HUANG Y, et al. Experimental and numerical investigation of thermoplastic honeycomb sandwich structures under bending loading[J]. Thin-Walled Structures,2020,155:106961. doi: 10.1016/j.tws.2020.106961
    [38] ZENG C, LIU L, BIAN W, et al. Bending performance and failure behavior of 3D printed continuous fiber reinforced composite corrugated sandwich structures with shape memory capability[J]. Composite Structures,2021,262:113626. doi: 10.1016/j.compstruct.2021.113626
    [39] SUGIYAMA K, MATSUZAKI R, UEDA M, et al. 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension[J]. Composites Part A: Applied Science and Manufacturing,2018,113:114-121. doi: 10.1016/j.compositesa.2018.07.029
    [40] PFLUG J, VANGRIMDE B, VERPOEST I, et al. Honeycomb core materials: New concepts for continuous production[J]. SAMPE Journal,2003,39(6):22-33.
    [41] MOUNTASIR A, HOFFMANN G, CHERIF C, et al. Development of non-crimp multi-layered 3D spacer fabric structures using hybrid yarns for thermoplastic composites[J]. Procedia Materials Science,2013,2:10-17. doi: 10.1016/j.mspro.2013.02.002
    [42] 杭州华聚复合材料有限公司. 热塑性蜂窝芯材[EB/OL]. [2022-02]. http: //www. holycore. cn/product-3. html.

    Hangzhou HolyPan Composite CO., LTD. Thermoplastic honeycomb core[EB/OL]. [2022-02]. http://www.holycore.cn/product-3.html(in Chinese).
    [43] VELEA M N, SCHNEIDER C, LACHE S. Second order hierarchical sandwich structure made of self-reinforced polymers by means of a continuous folding process[J]. Materials & Design,2016,102:313-320.
    [44] SCHNEIDER C, ZENKERT D, DESHPANDE V S, et al. Bending energy absorption of self-reinforced poly (ethylene terephthalate) composite sandwich beams[J]. Composite Structures,2016,140:582-589. doi: 10.1016/j.compstruct.2015.12.043
    [45] SCHNEIDER C, KAZEMAHVAZI S, RUSSELL B P, et al. Impact response of ductile self-reinforced composite corrugated sandwich beams[J]. Composites Part B: Engineering,2016,99:121-131. doi: 10.1016/j.compositesb.2016.06.046
    [46] ALI I, QI S, SHI P, et al. Investigation of mass distribution between core and face sheet on bending energy absorption of self-reinforced PP sandwich beams[J]. Thin-Walled Structures,2021,159:107283. doi: 10.1016/j.tws.2020.107283
    [47] 李静雯, 张博明, 孙义亮, 等. 不同铺层方式下连续玻璃纤维/聚丙烯复合材料波纹夹芯板的力学性能[J]. 复合材料学报, 2019, 36(5):1074-1082.

    LI Jingwen, ZHANG Boming, SUN Yiliang, et al. Mechanical properties of continuous glass fiber/polypropylene corrugated sandwich boards under different laminates[J]. Acta Materiae Compositae Sinica,2019,36(5):1074-1082(in Chinese).
    [48] LUO M, TIAN X, SHANG J, et al. Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites[J]. Composites Part A: Applied Science and Manufacturing,2019,121:130-138. doi: 10.1016/j.compositesa.2019.03.020
    [49] VELEA M N, LACHE S. Energy absorption of all-PET 2nd order hierarchical sandwich structures under quasi-static loading conditions[J]. Thin-Walled Structures,2019,138:117-123. doi: 10.1016/j.tws.2019.01.039
    [50] GRÜNEWALD J, PARLEVLIET P P, MATSCHINSKI A, et al. Mechanical performance of CF/PEEK–PEI foam core sandwich structures[J]. Journal of Sandwich Structures & Materials,2019,21(8):2680-2699.
    [51] CHEN Y, DAS R. A review on manufacture of polymeric foam cores for sandwich structures of complex shape in automotive applications[J]. Journal of Sandwich Structures & Materials, 2021, 24(1): 789-819.
    [52] HUFENBACH W, ADAM F, MÖBIUS T, et al. Application of transmission-based solutions for automated manufacturing of thermoplastic hybrid sandwich structures[J]. Procedia Materials Science,2013,2:83-91. doi: 10.1016/j.mspro.2013.02.011
    [53] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering,2018,143:172-196. doi: 10.1016/j.compositesb.2018.02.012
    [54] COMPTON B G, LEWIS J A. 3D-printing of lightweight cellular composites[J]. Advanced Materials,2014,26(34):5930-5935. doi: 10.1002/adma.201401804
    [55] BUICAN G R, ZAHARIA S M, POP M A, et al. Fabrication and characterization of fiber-reinforced composite sandwich structures obtained by fused filament fabrication process[J]. Coatings,2021,11(5):601-621. doi: 10.3390/coatings11050601
    [56] 田小永, 刘腾飞, 杨春成, 等. 高性能纤维增强树脂基复合材料 3D 打印及其应用探索[J]. 航空制造技术, 2016(15):26-31.

    TIAN Xiaoyong, LIU Tengfei, YANG Chuncheng, et al. Study on 3D printing process and performance of resin matrix composite lightweight structure[J]. Aeronautical Manufacturing Technology,2016(15):26-31(in Chinese).
    [57] CARLSSON L A, KARDOMATEAS G A. Structural and failure mechanics of sandwich composites[M]. Berlin: Springer, 2011.
    [58] MEYER P, BOBLENZ J, SENNEWALD C, et al. Development and testing of woven FRP flexure hinges for pressure-actuated cellular structures with regard to morphing wing applications[J]. Aerospace,2019,6(11):116-134. doi: 10.3390/aerospace6110116
    [59] MEYER P, LÜCK S, SPUHLER T, et al. Transient dynamic system behavior of pressure actuated cellular structures in a morphing wing[J]. Aerospace,2021,8(3):89-109. doi: 10.3390/aerospace8030089
    [60] EconCore. Honeycomb sandwich panel technology[DB/OL]. Matchmaking Event-RWTH Aachen, 2017-01-31.
    [61] BRÁDAIGH C M, DOYLE A, DOYLE D, et al. Electrically-heated ceramic composite tooling for out-of-autoclave manufacturing of large composite structures[C]//Proceedings of SAMPE 2011 Conference. Long Beach, California, 2011.
    [62] 蒋诗才, 包建文, 张连旺, 等. 液体成型树脂基复合材料及其工艺研究进展[J]. 航空制造技术, 2021, 64(5):70-81,102.

    JIANG Shicai, BAO Jianwen, ZHANG Lianwang, et al. Research progress of liquid molding resin matrix composites and its technology[J]. Aeronautical Manufacturing Technology,2021,64(5):70-81,102(in Chinese).
    [63] MURRAY R, SNOWBERG D R, BERRY D S, et al. Manufacturing a 9-meter thermoplastic composite wind turbine blade[R]. National Renewable Energy Lab, Golden, 2017.
    [64] MURRAY R E, ROADMAN J, BEACH R. Fusion joining of thermoplastic composite wind turbine blades: Lap-shear bond characterization[J]. Renewable Energy,2019,140:501-512. doi: 10.1016/j.renene.2019.03.085
    [65] MURRAY R E, PLUMER A, BEACH R, et al. Validation of a lightning protection system for a fusion-welded thermoplastic composite wind turbine blade tip[J]. Wind Engineering, 2022, 46(1): 260-272.
    [66] THOMAS D. Enhancing the electrical and mechanical properties of graphene nanoplatelet composites for 3D printed microsatellite structures[J]. Additive Manufacturing,2021,47:102215. doi: 10.1016/j.addma.2021.102215
    [67] WEI X, LI D, XIONG J. Fabrication and mechanical behaviors of an all-composite sandwich structure with a hexagon honeycomb core based on the tailor-folding approach[J]. Composites Science and Technology,2019,184:107878. doi: 10.1016/j.compscitech.2019.107878
    [68] WEI X, XUE P, WU Q, et al. Debonding characteristics and strengthening mechanics of all-CFRP sandwich beams with interface-reinforced honeycomb cores[J]. Composites Science and Technology,2021,218:109157.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  1994
  • HTML全文浏览量:  950
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-01-28
  • 录用日期:  2022-02-21
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回