留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹道防护用超高分子量聚乙烯纤维增强热塑性树脂基复合材料的拉伸力学行为

何业茂 焦亚男 周庆 贾楠 陈利 万喜莉

何业茂, 焦亚男, 周庆, 等. 弹道防护用超高分子量聚乙烯纤维增强热塑性树脂基复合材料的拉伸力学行为[J]. 复合材料学报, 2023, 40(1): 119-130. doi: 10.13801/j.cnki.fhclxb.20220221.001
引用本文: 何业茂, 焦亚男, 周庆, 等. 弹道防护用超高分子量聚乙烯纤维增强热塑性树脂基复合材料的拉伸力学行为[J]. 复合材料学报, 2023, 40(1): 119-130. doi: 10.13801/j.cnki.fhclxb.20220221.001
HE Yemao, JIAO Yanan, ZHOU Qing, et al. Tensile mechanical behavior of ultra-high molecular weight polyethylene reinforced thermoplastic resin matrix composites for ballistic application[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 119-130. doi: 10.13801/j.cnki.fhclxb.20220221.001
Citation: HE Yemao, JIAO Yanan, ZHOU Qing, et al. Tensile mechanical behavior of ultra-high molecular weight polyethylene reinforced thermoplastic resin matrix composites for ballistic application[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 119-130. doi: 10.13801/j.cnki.fhclxb.20220221.001

弹道防护用超高分子量聚乙烯纤维增强热塑性树脂基复合材料的拉伸力学行为

doi: 10.13801/j.cnki.fhclxb.20220221.001
详细信息
    通讯作者:

    焦亚男,博士,研究员,博士生导师,研究方向为纺织复合材料结构与性能 E-mail:jiaoyn@tiangong.edu.cn

  • 中图分类号: TB332

Tensile mechanical behavior of ultra-high molecular weight polyethylene reinforced thermoplastic resin matrix composites for ballistic application

  • 摘要: 以弹道防护用超高分子量聚乙烯(Ultra-high molecular weight polyethylene,UHMWPE)纤维增强热塑性树脂基复合材料作为研究对象,通过热压工艺制备单向正交结构的复合材料层压板。基于自主设计的拉伸试验装置,开展UHMWPE纤维增强热塑性树脂基复合材料在宏观尺度和准细观尺度上的面内拉伸试验,研究其面内拉伸力学性能及失效模式。研究结果显示:弹道防护用UHMWPE纤维增强热塑性树脂基复合材料在准细观尺度上的面内拉伸力学性能是其本征性能;随着偏轴角度的增加,拉伸断裂强度呈现指数型下降,这是由于失效模式由纤维的拉伸断裂破坏转变为纤维-树脂基体的界面破坏;此外,其在宏观尺度上的拉伸破坏强度比在准细观尺度上的拉伸断裂强度降低了50.52%,这是由于宏观尺度上的面内拉伸力学响应是其面内拉伸变形和层间分层破坏的耦合结果,即层压板的叠层效应。

     

  • 图  1  试验路线示意图:(a) 弹道防护用超高分子量聚乙烯(UHMWPE)纤维增强热塑性树脂基复合材料的制备工艺;(b) 力学试验试样的制备工艺;(c) 拉伸试验装置及试样规格

    Figure  1.  Schematic diagram of experimental route: (a) Preparation process of ultra-high molecular weight polyethylene (UHMWPE) fiber reinforced thermoplastic resin matrix composites for ballistic application; (b) Preparation process of mechanical test sample; (c) Tensile test device and sample specification

    UD—Unidirectional; R—Radius; Ø—Diameter

    图  2  准细观尺度试样的裁剪方案

    Figure  2.  Cutting scheme of quasi meso scale specimens

    图  3  UHMWPE纤维增强热塑性树脂基复合材料在准细观尺度上的面内拉伸载荷-位移曲线:(a) 沿纤维轴向;(b) 偏离纤维轴向

    Figure  3.  In-plane tensile load-displacement curves of UHMWPE fiber reinforced thermoplastic resin matrix composite on quasi meso scale: (a) Axial tensile; (b) Off-axis tensile

    图  4  UHMWPE纤维增强热塑性树脂基复合材料在准细观尺度上的面内拉伸响应过程:(a) 沿纤维轴向拉伸;(b) 偏离纤维轴向拉伸

    Figure  4.  In-plane tensile response process of UHMWPE fiber reinforced thermoplastic resin matrix composite on quasi meso scale: (a) Axial tensile; (b) Off-axis tensile

    t—Time

    图  5  UHMWPE纤维增强热塑性树脂基复合材料在准细观尺度上的面内拉伸力学性能:(a) 拉伸断裂强度均值;(b) 拉伸断裂位移均值;(c) 拉伸断裂的比吸收能均值;(d) 面内拉伸断裂强度的分布

    Figure  5.  Tensile mechanical properties of UHMWPE fiber reinforced thermoplastic resin matrix composite on quasi meso scale: (a) Average values of tensile strength at break; (b) Average values of tensile fracture displacement; (c) Average values of specific energy absorption of in-plane tensile fracture; (d) Distribution of in-pane tensile strength

    Ptm-2—Tensile breaking strength in the range of 45°-90°; P2(α)—Functional relationship of tensile breaking strength in the range of 45°-90°; Ptm-1—Tensile breaking strength in the range of 0°-45°; P1(α)—Functional relationship of tensile breaking strength in the range of 0°-45°; $ \alpha $—Radian value

    图  6  UHMWPE纤维增强热塑性树脂基复合材料样条中正交单元内单纤维的承载长度

    Figure  6.  Effective load length of single fiber in orthogonal element for UHMWPE fiber reinforced thermoplastic resin matrix composite samples

    图  7  UHMWPE纤维增强热塑性树脂基复合材料在宏观尺度上的面内拉伸力学性能:(a) 面内拉伸载荷-位移曲线;(b) 面内拉伸失效强度

    Figure  7.  In-plane tensile mechanical behavior of UHMWPE fiber reinforced thermoplastic resin matrix composite on macro scale: (a) Curves of in-plane tensile load-displacement; (b) In-plane tensile failure strength

    图  8  UHMWPE纤维增强热塑性树脂基复合材料在宏观尺度上的面内拉伸过程:(a) 沿纤维轴向拉伸;(b) 偏离纤维轴向拉伸

    Figure  8.  In-pane tensile process of UHMWPE fiber reinforced thermoplastic resin matrix composite on macro scale: (a) Axial tensile; (b) Off-axis tensile

    图  9  UHMWPE纤维增强热塑性树脂基复合材料在宏观尺度上的面内拉伸力学响应示意图:(a) 沿纤维轴向拉伸;(b) 偏离纤维轴向拉伸

    Figure  9.  Diagram of in-pane tensile mechanical response of UHMWPE fiber reinforced thermoplastic resin matrix composite on macro scale: (a) Axial tensile; (b) Off-axis tensile

    f (x)—In plane tensile force value function related to displacement

    图  10  UHMWPE纤维增强热塑性树脂基复合材料在宏观尺度上面内拉伸断裂后的损伤形貌:(a) 沿纤维轴向拉伸;(b) 偏离纤维轴向拉伸

    Figure  10.  Damage morphologies of UHMWPE fiber reinforced thermoplastic resin matrix composite after in-plane tensile fracture on macro scale: (a) Axial tensile; (b) Off-axis tensile

    图  11  UHMWPE纤维增强热塑性树脂基复合材料在准细观尺度上面内拉伸断裂后的损伤形貌:(a) 沿纤维轴向拉伸;(b) 偏离纤维轴向拉伸

    Figure  11.  Damage morphologies of UHMWPE fiber reinforced thermoplastic resin matrix composite after in-plane tensile fracture on quasi meso scale: (a) Axial tensile; (b) Off-axis tensile

    表  1  UHMWPE纤维增强热塑性树脂基复合材料的规格参数

    Table  1.   Specifications of UHMWPE fiber reinforced thermoplastic resin matrix composite

    MaterialStructure of coiled material (2UD)Width of coiled material/cmAreal density of 2UD sheet/(g·m−2)Fiber mass fraction/wt%
    UHMWPE fiber composite[0°/90°]160134±1087±3
    下载: 导出CSV

    表  2  UHMWPE纤维增强热塑性树脂基复合材料拉伸试样规格参数

    Table  2.   Specimen specifications of tensile test of UHMWPE fiber reinforced thermoplastic resin matrix composite

    Test scaleStructureSample shapeSpecificationLoad direction/(°)Size of loading response regionNumber of effective
    test pieces
    Width/mmThickness/mm
    Quasi-meso [0°/90°] Rectangle 0°-20 mm 0 20 0.1586 15
    0°-20 mm 40 0.1586 21
    0°-40 mm 7.5 40 0.1631 24
    7.5°-40 mm 15 40 0.1691 25
    30°-40 mm 30 40 0.1584 19
    45°-40 mm 45 40 0.1590 21
    90°-20 mm 90 20 0.1586 15
    Macro [0°/90°]57 Dog-bone 0°-5 mm 0 5 8.0722 5
    45°-5 mm 45 5 7.8481 5
    90°-5 mm 90 5 8.0722 6
    下载: 导出CSV
  • [1] 何业茂, 焦亚男, 周庆, 等. 弹道防护用先进复合材料弹道响应的研究进展[J]. 复合材料学报, 2021, 38(5):1331-1347.

    HE Yemao, JIAO Yanan, ZHOU Qing, et al. Research progress on ballistic response of advanced composite for ballistic protection[J]. Acta Materiae Compositae Sinica,2021,38(5):1331-1347(in Chinese).
    [2] CROUCH I G C. Body armour—New materials, new systems[J]. Defence Technology,2019,15(3):2214-9147. doi: 10.1016/j.dt.2019.02.002
    [3] MO G L, MA Q W, JIN Y X, et al. Delamination process in cross-ply UHMWPE laminates under ballistic penetration[J]. Defence Technology,2020,17(1):278-286. doi: 10.1016/j.dt.2020.05.001
    [4] LANGSTON T. An analytical model for the ballistic performance of ultra-high molecular weight polyethylene composites[J]. Composite Structures,2017,179:245-257. doi: 10.1016/j.compstruct.2017.07.074
    [5] ATTWOOD J P, RUSSELL B P, WADLEY H N G, et al. Mechanisms of the penetration of ultra-high molecular weight polyethylene composite beams[J]. International Journal of Impact Engineering,2016,93:153-165. doi: 10.1016/j.ijimpeng.2016.02.010
    [6] NGUYEN L H, RYAN S, CIMPOERU S J, et al. The effect of target thickness on the ballistic performance of ultra-high molecular weight polyethylene composite[J]. International Journal of Impact Engineering,2015,75:174-183. doi: 10.1016/j.ijimpeng.2014.07.008
    [7] NGUYEN L H, RYAN S, ORIFICI A C, et al, A penetration model for semi-infinite composite targets[J]. International Journal of Impact Engineering, 2020, 137: 103438.
    [8] STEPHANIE G N, RICCARDO S, ANDREA M, et al. Influence of projectile and thickness on the ballistic behavior of aramid composites: Experimental and numerical study[J]. International Journal of Impact Engineering,2019,132:103307. doi: 10.1016/j.ijimpeng.2019.05.021
    [9] KARTHIKEYAN K, RUSSELL B P. Polyethylene ballistic laminates: Failure mechanics and interface effect[J]. Materials & Design,2014,63:115-125.
    [10] O’MASTA M R, CRATON D H, DESHPANDE V S, et al. Mechanisms of penetration in polyethylene reinforced cross-ply laminates[J]. International Journal of Impact Engineering,2015,86:249-264. doi: 10.1016/j.ijimpeng.2015.08.012
    [11] MESHI I, AMARILIO I, BENES D, et al. Delamination behavior of UHMWPE soft layered composites[J]. Composites Part B: Engineering,2016,98:166-175. doi: 10.1016/j.compositesb.2016.05.027
    [12] BOGERRI T A, WALTER M, STANISZEWSKI J, et al. Interlaminar shear characterization of ultra-high molecular weight polyethylene (UHMWPE) composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2017,98:105-115. doi: 10.1016/j.compositesa.2017.03.018
    [13] IANNUCCI L, DEL R S, CURTIS P, et al. Understanding the thickness effect on the tensile strength property of Dyneema®HB26 laminates[J]. Materials,2018,11(8):1431. doi: 10.3390/ma11081431
    [14] RUSSELL B P, KARTHIKEYAN K, DESHPANDE V S, et al. The high strain rate response of ultra high molecular-weight polyethylene: From fibre to laminate[J]. International Journal of Impact Engineering,2013,60:1-9. doi: 10.1016/j.ijimpeng.2013.03.010
    [15] LAESSIG T, NGUYEN L, MAY M, et al. A non-linear orthotropic hydrocode model for ultra-high molecular weight polyethylene in impact simulations[J]. International Journal of Impact Engineering,2015,75:110-122. doi: 10.1016/j.ijimpeng.2014.07.004
    [16] JACOB A, AVIAD L S, IDO M, et al. Experimental determination of linear and nonlinear mechanical properties of laminated soft composite material system[J]. Composites Part B: Engineering,2014,57:96-104. doi: 10.1016/j.compositesb.2013.09.043
    [17] KARTIKEYA K, CHOUHAN H, AHMED A, et al. Determination of tensile strength of UHMWPE fiber-reinforced polymer composites[J]. Polymer Testing,2020,82:106293. doi: 10.1016/j.polymertesting.2019.106293
    [18] CHEN L, ZHENG K, FANG Q. Effect of strain rate on the dynamic tensile behaviour of UHMWPE fibre laminates[J]. Polymer Testing,2017,63:54-64. doi: 10.1016/j.polymertesting.2017.07.031
    [19] LAESSIG T R, MAY M, HEISSERER U, et al. Effect of consolidation pressure on the impact behavior of UHMWPE composites[J]. Composites Part B: Engineering, 2018, 147: 47-55.
    [20] 中国国家标准化管理委员会. 纤维增强塑料性能测试方法总则: GB/T 1446—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of China. Fiber-reinforced plastics composite—The generals for determination of properties: GB/T 1446—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [21] CLINE J, LOVE B. The effect of in-plane shear properties on the ballistic performance of polyethylene composites[J]. International Journal of Impact Engineering, 2020, 143: 103592.
    [22] O’MASTA M R, DESHPANDE V S, WADLEY H N G. Mechanisms of projectile penetration in Dyneema® encapsulated aluminum structures[J]. International Journal of Impact Engineering,2014,74:16-35. doi: 10.1016/j.ijimpeng.2014.02.002
    [23] 何业茂, 焦亚男, 周庆, 等. 超高分子量聚乙烯纤维/水性聚氨酯复合材料层压板抗软钢芯弹侵彻性能及其损伤机制[J]. 复合材料学报, 2021, 38(5):1455-1467.

    HE Yemao, JIAO Yanan, ZHOU Qing, et al. Ballistic performance of ultra-high molecular weight polyethylene fiber/waterborne polyurethane composite laminate against mild-steel core projectile and its damage mechanism[J]. Acta Materiae Compositae Sinica,2021,38(5):1455-1467(in Chinese).
    [24] LIU B, WADLEY H, DESHPANDE V. Failure mechanism maps for ultra-high molecular weight polyethylene fibre composite beams impacted by blunt projectiles[J]. International Journal of Solids and Structures,2019,178-179:180-198. doi: 10.1016/j.ijsolstr.2019.07.001
    [25] 余同希, 邱信明. 冲击动力学[M]. 北京: 清华大学出版社, 2011: 171-176.

    YU Tongxi, QIU Xinming. Impact dynamics[M]. Beijing: Tsinghua University Press, 2011: 171-176(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1048
  • HTML全文浏览量:  522
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 修回日期:  2022-01-22
  • 录用日期:  2022-02-11
  • 网络出版日期:  2022-02-22
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回