留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米ZnO/生物基尼龙612纳米复合抗菌薄膜的制备与性能

李霞 刘跃军 刘小超 江南 王雄刚 莫智翔 胡钰迪 郑伟

李霞, 刘跃军, 刘小超, 等. 纳米ZnO/生物基尼龙612纳米复合抗菌薄膜的制备与性能[J]. 复合材料学报, 2023, 40(1): 437-446. doi: 10.13801/j.cnki.fhclxb.20220208.001
引用本文: 李霞, 刘跃军, 刘小超, 等. 纳米ZnO/生物基尼龙612纳米复合抗菌薄膜的制备与性能[J]. 复合材料学报, 2023, 40(1): 437-446. doi: 10.13801/j.cnki.fhclxb.20220208.001
LI Xia, LIU Yuejun, LIU Xiaochao, et al. Preparation and properties of nano-ZnO/bio-based nylon 612 nano-composite antibacterial film[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 437-446. doi: 10.13801/j.cnki.fhclxb.20220208.001
Citation: LI Xia, LIU Yuejun, LIU Xiaochao, et al. Preparation and properties of nano-ZnO/bio-based nylon 612 nano-composite antibacterial film[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 437-446. doi: 10.13801/j.cnki.fhclxb.20220208.001

纳米ZnO/生物基尼龙612纳米复合抗菌薄膜的制备与性能

doi: 10.13801/j.cnki.fhclxb.20220208.001
基金项目: 国家自然科学基金(11872179);湖南省自然科学基金(2020JJ5137);湖南省教育厅科学研究项目(19A138;19B152)
详细信息
    通讯作者:

    刘跃军,博士,教授,博士生导师,研究方向为高分子材料加工工程、先进包装材料与技术 E-mail: yjliu_2005@126.com

  • 中图分类号: TB332

Preparation and properties of nano-ZnO/bio-based nylon 612 nano-composite antibacterial film

Funds: National Natural Science Foundation of China (11872179); Natural Science Foundation of Hunan Province (2020JJ5137); Scientific Research Project of Education Department of Hunan Province (19A138; 19B152)
  • 摘要: 细菌滋生将缩短食品货架周期,对人体健康产生负面影响,因此开展抗菌包装膜的研究十分重要。本文采用γ-氨丙基三乙氧基硅烷偶联剂(KH550)改性了纳米氧化锌(ZnO),并将改性后的纳米氧化锌(m-ZnO)与尼龙612 (PA612)进行熔融共混制备复合材料,最终采用挤出流延制备了m-ZnO/PA612纳米复合抗菌薄膜。采用FTIR对改性前后的ZnO进行表征,证明了KH550成功接枝到ZnO上。通过SEM、DSC、TGA、平板计数法等测试手段对ZnO的分散及复合材料的结晶性能、热性能、抗菌性能进行了研究。结果表明:m-ZnO在PA612基体中分散良好。m-ZnO可以作为成核剂提高PA612的结晶度,m-ZnO的含量为2wt%时,其结晶度提高了4.1%。m-ZnO对PA612有增强作用,m-ZnO的添加量为2wt%时,m-ZnO/PA612纳米复合薄膜的拉伸强度较纯PA612提高了15%。m-ZnO的存在赋予了PA612抗菌性能,m-ZnO/PA612纳米复合薄膜对大肠杆菌和金黄色葡萄球菌均有很好的抗菌效果,且随着m-ZnO含量的增大,抗菌率增大,m-ZnO的质量分数为4wt%时,对大肠杆菌的抗菌率为93.25%,对金黄色葡萄球菌的抗菌率为91.03%。

     

  • 图  1  ZnO和m-ZnO的FTIR光谱

    Figure  1.  FTIR spectra of ZnO and m-ZnO

    图  2  ZnO含量2wt%和不同m-ZnO含量的PA612纳米复合材料的脆断截面SEM图像及外观图片

    Figure  2.  Fracture cross section SEM images and appearance pictures of PA612 nanocomposites with different m-ZnO contents and ZnO content 2wt%

    图  3  2wt%m-ZnO/PA612的SEM图像和EDX映射元素Zn、Si、N和O图谱

    Figure  3.  SEM images of 2wt%m-ZnO/PA612 and EDX mapping elements Zn, Si, N and O

    图  4  PA612及不同m-ZnO含量的PA612纳米复合材料的DSC图谱:(a) 升温;(b) 降温

    Figure  4.  DSC curves of PA612 and PA612 nanocomposites with different m-ZnO contents: (a) Heating procedure; (b) Cooling procedure

    图  5  PA612及不同m-ZnO含量的PA612纳米复合材料的XRD图谱

    Figure  5.  XRD patterns of PA612 and PA612 nanocomposites with different m-ZnO contents

    图  6  PA612及不同m-ZnO含量的PA612纳米复合材料的TGA热重曲线

    Figure  6.  TGA curves of PA612 and PA612 nanocomposites with different m-ZnO contents

    图  7  PA612及不同m-ZnO含量的PA612纳米复合材料的拉伸应力-应变曲线

    Figure  7.  Tensile stress versus strain curves of PA612 and PA612 nanocomposites with different m-ZnO contents

    图  8  PA612及不同m-ZnO含量的PA612纳米复合材料的光学性能

    Figure  8.  Optical properties of PA612 and PA612 nanocomposites with different m-ZnO contents

    图  9  PA612及不同m-ZnO含量的PA612纳米复合材料对大肠杆菌的抗菌测试结果照片

    Figure  9.  Photos of antibacterial test results of PA612 and PA612 nanocomposites with different m-ZnO contents against Escherichia coli

    图  10  PA612及不同m-ZnO含量的PA612纳米复合材料对金黄色葡萄球菌的抗菌测试结果照片

    Figure  10.  Photos of antibacterial test results of PA612 and PA612 nanocomposites with different m-ZnO contents against Staphylococcus aureus

    表  1  不同ZnO含量的ZnO/PA612抗菌复合膜

    Table  1.   ZnO/PA612 antibacterial composite films with different ZnO content

    SampleMass fraction/wt%
    PA612m-ZnOZnO
    PA612 100 0 0
    0.5wt%m-ZnO/PA612 99.5 0.5 0
    2wt%
    ZnO/PA612
    98 0 2
    2wt%m-ZnO/PA612 98 2 0
    4wt%m-ZnO/PA612 96 4 0
    6wt%m-ZnO/PA612 94 6 0
    Notes: m-ZnO—Modified nano zinc oxide; ZnO—Unmodified nano zinc oxide; PA612—Nylon 612.
    下载: 导出CSV

    表  2  PA612及不同m-ZnO含量的PA612纳米复合材料的DSC热分析数据

    Table  2.   DSC thermal analysis data of PA612 and PA612 nanocomposites with different m-ZnO contents

    SampleTm/℃Tc/℃ΔHm/(J·g−1)Xc/%
    PA612222.86186.2661.2223.73
    0.5wt%m-ZnO/PA612220.37187.0970.6827.53
    2wt%m-ZnO/PA612221.67187.3470.3627.83
    4wt%m-ZnO/PA612221.29186.9966.9926.93
    6wt%m-ZnO/PA612220.97186.1465.6126.88
    Notes: Tm—Melting peak temperature; Tc—Crystallization peak temperature; △Hm—Melting enthalpy; Xc—Crystallinity.
    下载: 导出CSV

    表  3  PA612及不同m-ZnO含量的PA612纳米复合材料的热稳定性

    Table  3.   Thermal stability of PA612 and PA612 nanocomposites with different m-ZnO contents

    SampleT5%/℃T50%/℃Char yield at 600℃/wt%
    PA612398.9450.02.3
    0.5wt%m-ZnO/PA612400.4446.02.7
    2wt%m-ZnO/PA612397.2443.03.5
    4wt%m-ZnO/PA612399.3446.74.7
    6wt%m-ZnO/PA612398.6446.37.8
    Notes: T5% and T50%—Temperature when the weight loss of the samples is 5wt% and 50wt%, respectively.
    下载: 导出CSV

    表  4  PA612及不同m-ZnO含量的PA612纳米复合材料的拉伸性能

    Table  4.   Tensile properties of PA612 and PA612 nanocomposites with different m-ZnO contents

    SampleTensile stress/MPaYoung’s modulus/MPaElongation at break/%
    PA612 93.95±5.55 685.11±50.97 392.77±13.70
    0.5wt%m-ZnO/PA612 93.06±4.56 543.66±39.20 378.30±11.08
    2wt%m-ZnO/PA612 108.13±1.76 889.70±60.78 305.23±10.13
    4wt%m-ZnO/PA612 84.31±8.35 422.97±94.12 371.85±27.97
    6wt%m-ZnO/PA612 83.06±10.85 486.79±71.10 325.38±32.66
    下载: 导出CSV

    表  5  PA612及不同m-ZnO含量的PA612纳米复合材料膜对大肠杆菌的抑菌活性

    Table  5.   Antibacterial activity of PA612 and PA612 nanocomposites with different m-ZnO contents membranes against Escherichia coli

    SampleBacteria concentration/
    (CFU·mL−1)
    Antibacterial rate R/%
    PA6125.48×106 0.00
    0.5wt%m-ZnO/PA6123.89×10629.01
    2wt%ZnO/PA6121.43×10673.91
    2wt%m-ZnO/PA6125.30×10590.33
    4wt%m-ZnO/PA6123.70×10593.25
    6wt%m-ZnO/PA6122.50×10595.44
    下载: 导出CSV

    表  6  PA612及不同m-ZnO含量的PA612纳米复合材料膜对金黄色葡萄球菌的抑菌活性

    Table  6.   Antibacterial activity of PA612 and PA612 nanocomposites with different m-ZnO contents membranes against Staphylococcus aureus

    SampleBacteria concentration/
    (CFU·mL−1)
    Antibacterial
    rate R/%
    PA6125.35×106 0.00
    0.5wt%m-ZnO/PA6123.60×10632.71
    2wt%ZnO/PA6121.73×10667.66
    2wt%m-ZnO/PA6129.40×10582.43
    4wt%m-ZnO/PA6124.80×10591.03
    6wt%m-ZnO/PA6123.60×10593.27
    下载: 导出CSV
  • [1] FUNK I, RIMMEL N, SCHORSCH C, et al. Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using Candida tropicalis[J]. Journal of Industrial Microbiology and Biotechnology,2017,44(10):1491-1502. doi: 10.1007/s10295-017-1972-6
    [2] TYUFTIN A A, KERRY J P. Review of surface treatment methods for polyamide films for potential application as smart packaging materials: Surface structure, antimicrobial and spectral properties[J]. Food Packaging and Shelf Life,2020,24:100475. doi: 10.1016/j.fpsl.2020.100475
    [3] WU Y, HUANG A, FAN S, et al. Crystal structure and mechanical properties of uniaxially stretched PA612/SiO2 films[J]. Polymers,2020,12(3):711. doi: 10.3390/polym12030711
    [4] WADI V S, JENA K K, HALIQUE K, et al. Linear sulfur-nylon composites: Structure, morphology, and antibacterial activity[J]. ACS Applied Polymer Material,2020,2(2):198-208. doi: 10.1021/acsapm.9b00754
    [5] RYŠÁNEK P, MALÝ M, ČAPKOVÁ P, et al. Antibacterial modification of nylon-6 nanofibers: Structure, properties and antibacterial activity[J]. Journal of Polymer Research,2017,24(11):1-10. doi: 10.1007/s10965-017-1365-6
    [6] TANG L, WANG D Y, XU Q S, et al. Preparation and characterization of antibacterial nylon 6 fiber[J]. Materials Science Forum,2017,898:2254-2262. doi: 10.4028/www.scientific.net/MSF.898.2254
    [7] VENKATRAM M, NARASIMHA MURTHY H N R, GAIKWAD A, et al. Antibacterial and flame retardant properties of Ag-MgO/nylon 6 electrospun nanofibers for protective applications[J]. Clothing and Textiles Research Journal,2018,36(4):296-309. doi: 10.1177/0887302X18783071
    [8] ROHAETI E, RAKHMAWATI A. Application of Terminalia catappa in preparation of silver nanoparticles to develop antibacterial Nylon[J]. Oriental Journal of Chemistry,2017,33:2905-2912. doi: 10.13005/ojc/330625
    [9] OMER R A, GHENI A I, OMAR K A, et al. Antimicrobial activity of nylon nanocomposites against Staphylococcus aureus and Escherichia coli bacteria[J]. Science Journal of University of Zakho,2019,7(4):138-143. doi: 10.25271/sjuoz.2019.7.4.631
    [10] WANG Z, ZHANG L, LIU Z, et al. The antibacterial polyamide 6-ZnO hierarchical nanofibers fabricated by atomic layer deposition and hydrothermal growth[J]. Nanoscale Research Letters,2017,12(1):1-8. doi: 10.1186/s11671-016-1773-2
    [11] TANG Q, WANG K, REN X, et al. Preparation of porous antibacterial polyamide 6 (PA6) membrane with zinc oxide (ZnO) nanoparticles selectively localized at the pore walls via reactive extrusion[J]. Science of the Total Environment,2020,715:137018. doi: 10.1016/j.scitotenv.2020.137018
    [12] THOKALA N, KEALEY C, KENNEDY J, et al. Characterisation of polyamide 11/copper antimicrobial composites for medical device applications[J]. Materials Science and Engineering: C,2017,78:1179-1186. doi: 10.1016/j.msec.2017.03.149
    [13] SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism[J]. Nano-micro Letters,2015,7(3):219-242. doi: 10.1007/s40820-015-0040-x
    [14] QI K, CHENG B, YU J, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO[J]. Journal of Alloys and Compounds,2017,727:792-820. doi: 10.1016/j.jallcom.2017.08.142
    [15] LI S C, LI Y N. Mechanical and antibacterial properties of modified nano-ZnO/high-density polyethylene composite films with a low doped content of nano-ZnO[J]. Journal of Applied Polymer Science,2010,116(5):2965-2969. doi: 10.1002/app.31802
    [16] KIM I, VISWANATHAN K, KASI G, et al. Poly(lactic acid)/ZnO bionanocomposite films with positively charged ZnO as potential antimicrobial food packaging materials[J]. Polymers,2019,11(9):1427. doi: 10.3390/polym11091427
    [17] LI Y, XU W, ZHANG G. Effect of coupling agent on nano-ZnO modification and antibacterial activity of ZnO/HDPE nanocomposite films[J]. IOP Conference Series: Materials Science and Engineering,2015,87:012054. doi: 10.1088/1757-899X/87/1/012054
    [18] LI Y, YU J, GUO Z. The influence of silane treatment on Nylon 6/nano-SiO2 in situ polymerization[J]. Journal of Applied Polymer Science,2002,84(4):827-834. doi: 10.1002/app.10349
    [19] 国家化学建筑材料测试中心(材料测试部). 透明塑料透光率和雾度的测定: GB/T 2410—2008[S]. 北京: 中国标准出版社, 2008.

    National Testing Center of Polymer and Chemical Building Materials (Materials Testing Department). Determination of the luminous transmittance and haze of transparent plastics: GB/T 2410—2008[S]. Beijing: China StandardsPress, 2008(in Chinese).
    [20] 中华人民共和国卫生部. 塑料—塑料表面抗菌性能试验方法: GB/T 31402—2015[S]. 北京: 中国标准出版社, 2015.

    Ministry of Health of the People's Republic of China. Plastics—Measurement of antibacterial activity on plastics surfaces: GB/T 31402—2015[S]. Beijing: China Standards Press, 2015(in Chinese).
    [21] KHURANA N, ARORA P, PENTE A S, et al. Surface modification of zinc oxide nanoparticles by vinyltriethoxy silane (VTES)[J]. Inorganic Chemistry Communications,2021,124:108347. doi: 10.1016/j.inoche.2020.108347
    [22] HANG T T X, DUNG N T, TRUC T A, et al. Effect of silane modified nano ZnO on UV degradation of polyurethane coatings[J]. Progress in Organic Coatings,2015,79:68-74. doi: 10.1016/j.porgcoat.2014.11.008
    [23] FAN X, YAN Y. Poly (amino acid)/ZnO nanoparticles nanocomposites with enhanced thermal, mechanical, and antibacterial properties[J]. Polymer Bulletin,2020,77(5):2325-2343. doi: 10.1007/s00289-019-02860-6
    [24] SHANKAR S, WANG L F, RHIM J W. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films[J]. Materials Science and Engineering: C,2018,93:289-298. doi: 10.1016/j.msec.2018.08.002
    [25] ASANO T, BALTÁ CALLEJA F J, GIR L, et al. Structure and mechanical properties of nylon 612 prepared by temperature slope crystallization. II. Rolling deformation and microhardness of the oriented negative spherulite[J]. Journal of Macromolecular Science, Part B: Physics,1997,36(6):799-812. doi: 10.1080/00222349708212403
    [26] SHOJAEIARANI J, BAJWA D, JIANG L, et al. Insight on the influence of nano zinc oxide on the thermal, dynamic mechanical, and flow characteristics of poly(lactic acid)-zinc oxide composites[J]. Polymer Engineering & Science,2019,59(6):1242-1249. doi: 10.1002/pen.25107
    [27] MALLAKPOUR S, NOURUZI N. Effect of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites[J]. Polymer,2016,89:94-101. doi: 10.1016/j.polymer.2016.02.038
    [28] LIU J, WANG Y, MA J, et al. A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO[J]. Journal of Alloys and Compounds,2019,783:898-918. doi: 10.1016/j.jallcom.2018.12.330
    [29] HU C, GUO J, QU J, et al. Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation[J]. Langmuir,2007,23(9):4982-4987. doi: 10.1021/la063626x
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  1117
  • HTML全文浏览量:  539
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 修回日期:  2021-12-27
  • 录用日期:  2022-01-15
  • 网络出版日期:  2022-02-08
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回