留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超疏水FeNi2O4/甲基丙烯酸乙烯酯-二乙烯苯共聚物多孔材料的制备及其油水分离应用

余传明 邱心妮 王欣 张楠涛 黄可仪 柯思因 李泳

余传明, 邱心妮, 王欣, 等. 超疏水FeNi2O4/甲基丙烯酸乙烯酯-二乙烯苯共聚物多孔材料的制备及其油水分离应用[J]. 复合材料学报, 2023, 40(1): 244-254. doi: 10.13801/j.cnki.fhclxb.20220120.005
引用本文: 余传明, 邱心妮, 王欣, 等. 超疏水FeNi2O4/甲基丙烯酸乙烯酯-二乙烯苯共聚物多孔材料的制备及其油水分离应用[J]. 复合材料学报, 2023, 40(1): 244-254. doi: 10.13801/j.cnki.fhclxb.20220120.005
YU Chuanming, QIU Xinni, WANG Xin, et al. Fabrication of superhydrophobic FeNi2O4/vinyl methacrylate-diethylenebenzene copolymer porous material and its application for oil-water separation[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 244-254. doi: 10.13801/j.cnki.fhclxb.20220120.005
Citation: YU Chuanming, QIU Xinni, WANG Xin, et al. Fabrication of superhydrophobic FeNi2O4/vinyl methacrylate-diethylenebenzene copolymer porous material and its application for oil-water separation[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 244-254. doi: 10.13801/j.cnki.fhclxb.20220120.005

超疏水FeNi2O4/甲基丙烯酸乙烯酯-二乙烯苯共聚物多孔材料的制备及其油水分离应用

doi: 10.13801/j.cnki.fhclxb.20220120.005
基金项目: 广东省教育厅青年创新人才类项目(2017KQNCX093);湛江市科技计划项目(2018A01042);广东海洋大学科研启动项目(R18018)
详细信息
    通讯作者:

    余传明,博士,副教授,硕士生导师,研究方向为水处理功能材料 E-mail: yucmingdou@163.com

  • 中图分类号: TB332

Fabrication of superhydrophobic FeNi2O4/vinyl methacrylate-diethylenebenzene copolymer porous material and its application for oil-water separation

Funds: Youth Innovation Talent Project of Guangdong Provincial Education Department (2017KQNCX093); Science and Technology Plan Project of Zhanjiang City (2018A01042); Innovation University Program of Guangdong Ocean University (R18018)
  • 摘要: 为了应对日益频发的溢油事故,实现含油水体的净化,通过高内相Pickering乳液模板法制备了FeNi2O4掺杂的甲基丙烯酸乙烯酯-二乙烯苯共聚物多孔材料。采用FTIR、SEM、TGA、VSM、接触角测量仪、静态压汞仪、万能试验机等对材料结构与性能进行表征与分析。结果表明,材料具有三维分级多孔结构,孔径主要分布于3 μm及6~14 μm且大孔孔径可调节。材料热稳定性好,初始热分解温度最高达300℃。FeNi2O4纳米粒子的引入不仅提升了乳液稳定性,也赋予材料磁响应性。材料具有良好的疏水亲油性,水接触角达151°、滚动角为5°、油接触角为0°,吸油速率快,并具有良好的重复利用性和优异的油水吸附选择性,对多种油品及有机溶剂的饱和吸附倍率达40.80~93.08 g·g−1,且保油率均在90%以上。探究了材料的孔结构调控,发现,改变乳液的内相比可以调节材料的大孔分布、孔隙率、密度、比表面积、吸油倍率和力学性能。综上说明:超疏水FeNi2O4/甲基丙烯酸乙烯酯-二乙烯苯共聚物多孔材料可以高效分离水中油污,对水体环境的治理与净化具有现实意义。

     

  • 图  1  FeNi2O4的SEM图像 (a) 和XRD图谱 (b)

    Figure  1.  SEM image (a) and XRD pattern (b) of FeNi2O4

    图  2  高内相FeNi2O4/poly(VMA400-DVB100)-10乳液的显微图像 (a) 和光学照片 (b)

    Figure  2.  Microscopic image (a) and optical photograph (b) of the high internal phase FeNi2O4/poly(VMA400-DVB100)-10 emulsion

    图  3  FeNi2O4/poly(VMA400-DVB100)-10 (a)、 FeNi2O4/poly(VMA400-DVB100)-20 (b) 和 FeNi2O4/poly(VMA400-DVB100)-30 (c)的SEM图像

    Figure  3.  SEM images of FeNi2O4/poly(VMA400-DVB100)-10 (a), FeNi2O4/poly(VMA400-DVB100)-20 (b) and FeNi2O4/poly(VMA400-DVB100)-30 (c)

    图  4  FeNi2O4/poly(VMA-DVB)复合材料的孔径分布

    Figure  4.  Pore size distribution of FeNi2O4/poly(VMA-DVB)

    图  5  FeNi2O4/poly(VMA-DVB)复合材料的FTIR图谱 (a) 和热失重分析曲线 (b)

    Figure  5.  FTIR spectra (a) and TGA curves (b) of FeNi2O4/poly(VMA-DVB) composite materials

    图  6  (a) FeNi2O4/poly(VMA400-DVB100)-10的油/水润湿示意图;(b) 水接触角;(c) 油接触角;(d) 水滚动示意图

    Figure  6.  (a) Schematic diagram of oil/water wettability for sample FeNi2O4/poly(VMA400-DVB100)-10; (b) Water contact angle; (c) Oil contact angle; (d) Rolling diagram of water

    α—Rolling angle

    图  7  FeNi2O4/poly(VMA400-DVB100)-10的油水分离示意图:(a) 水下重油;(b) 水面浮油

    Figure  7.  Schematic diagram of FeNi2O4/poly(VMA400-DVB100)-10 for oil-water separation: (a) Heavy oil; (b) Floating oil

    图  8  纯FeNi2O4粒子及FeNi2O4/poly(VMA400-DVB100)-10的磁滞回线

    Figure  8.  Magnetic hysteresis loops for pure FeNi2O4 particles and sample FeNi2O4/poly(VMA400-DVB100)-10

    图  9  FeNi2O4/poly(VMA-DVB)复合材料对不同油品的吸油倍率

    Figure  9.  Oil adsorption of FeNi2O4/poly(VMA-DVB) for different oil products

    DCM—Dichloromethane

    图  10  FeNi2O4/poly(VMA400-DVB100)-30的吸附动力学曲线

    Figure  10.  Adsorption kinetic curves of FeNi2O4/poly(VMA400-DVB100)-30

    图  11  (a) FeNi2O4/poly(VMA400-DVB100)-30对柴油的吸附-脱附循环曲线;(b) 重复利用示意图

    Figure  11.  (a) Adsorption-centrifugation curves of FeNi2O4/poly(VMA400-DVB100)-30 for diesel; (b) Diagram of regeneration

    图  12  FeNi2O4/poly(VMA-DVB)复合材料的应力-应变曲线

    Figure  12.  Compressive stress-strain curves for FeNi2O4/poly(VMA-DVB)

    表  1  镍铁氧体/甲基丙烯酸乙烯酯-二乙烯苯共聚物(FeNi2O4/poly(VMA-DVB))乳液配方表

    Table  1.   Composition of FeNi2O4-doped vinyl methacrylate-diethylenebenzene (FeNi2O4/poly(VMA-DVB)) emulsions

    编号VMA/μLDVB/μLH2O/mL
    FeNi2O4/poly(VMA100-DVB400)-1010040010
    FeNi2O4/poly(VMA250-DVB250)-1025025010
    FeNi2O4/poly(VMA400-DVB100)-1040010010
    FeNi2O4/poly(VMA400-DVB100)-2040010020
    FeNi2O4/poly(VMA400-DVB100)-3040010030
    下载: 导出CSV

    表  2  FeNi2O4/poly(VMA-DVB)复合材料的密度、孔隙率和比表面积

    Table  2.   Density, porosity and specific surface area of FeNi2O4/poly(VMA-DVB) composite materials

    SampleDensity
    /(g·cm−1)
    Porosity
    /%
    Specific surface area
    /(m2·g−1)
    FeNi2O4/poly(VMA400-DVB100)-100.04392.2318.06
    FeNi2O4/poly(VMA400-DVB100)-200.02495.4733.42
    FeNi2O4/poly(VMA400-DVB100)-300.01297.1843.77
    下载: 导出CSV

    表  3  油/有机溶剂的物性参数

    Table  3.   Characteristics of the utilized oils and organic solvents

    Oils or
    solvents
    Density/
    (g·cm−1)
    Viscosity/
    (mPa·s)
    Adsorption capacity/(g·g−1)
    FeNi2O4/poly(VMA400-DVB100)-10FeNi2O4/poly(VMA400-DVB100)-20FeNi2O4/poly(VMA400-DVB100)-30
    Chloroform 1.48 0.54 31.03 62.05 93.08
    DCM 1.32 0.42 27.72 55.44 83.16
    Ethyl acetate 0.90 0.43 18.83 37.66 56.49
    Petroleum ether 0.65 0.29 13.60 27.20 40.80
    Toluene 0.87 0.58 18.24 36.49 54.73
    Gasoline 0.74 0.52 15.48 30.96 46.44
    Diesel 0.85 5.50 17.78 35.56 53.35
    Olive oil 0.91 12.00 19.08 38.16 57.24
    下载: 导出CSV

    表  4  FeNi2O4/poly(VMA-DVB)复合材料的保油率

    Table  4.   Oil retention of FeNi2O4/poly(VMA-DVB)

    Oils or
    solvents
    Oil retention/%
    FeNi2O4/poly
    (VMA400-
    DVB100)-10
    FeNi2O4/poly
    (VMA400-
    DVB100)-20
    FeNi2O4/poly
    (VMA400-
    DVB100)-30
    Chloroform96.695.896.2
    DCM96.296.095.7
    Ethyl acetate96.796.495.9
    Petroleum ether97.296.997.3
    Toluene96.396.196.0
    Gasoline96.296.596.5
    Diesel94.494.194.1
    Olive oil90.891.191.3
    下载: 导出CSV
  • [1] ZHANG N, QI Y F, ZHANG Y N, et al. A review on oil/water mixture separation material[J]. Industrial and Engineering Chemistry Research,2020,59(33):14546-14568. doi: 10.1021/acs.iecr.0c02524
    [2] 余传明, 曾圣威, 刘叶原, 等. 高内相乳液法制备P(St-DVB)多孔吸油材料及其在油水分离中的应用[J]. 材料导报, 2021, 35(4):4200-4204. doi: 10.11896/cldb.19100011

    YU Chuanming, ZENG Shengwei, LIU Yeyuan, et al. Fabrication of porous oil-absorbing P(St-DVB) by high internal phase emulsion and its application for oil-water separation[J]. Materials Reports,2021,35(4):4200-4204(in Chinese). doi: 10.11896/cldb.19100011
    [3] 戴举国. TiO2/藻酸盐生物质复合气凝胶的制备及水处理应用[D]. 福州: 福建农林大学, 2019.

    DAI Juguo. Biomass TiO2/alginate composite aerogels: Fabrication and applications in water treatment[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019(in Chinese).
    [4] LI L B, ZHANG G Y, SU Z H. One-step assembly of phytic acid metal complexes for superhydrophilic coatings[J]. Angewandte Chemie International Edition,2016,55(31):9093-9096. doi: 10.1002/anie.201604671
    [5] SUN S, XIAO Q R, ZHOU X, et al. A bio-based environment-friendly membrane with facile preparation process for oil-water separation[J]. Colloids and Surfaces A,2018,559:18-22. doi: 10.1016/j.colsurfa.2018.09.038
    [6] LU J W, LI F C, GAN M, et al. Superhydrophilic/superoleophobic shell powder coating as a versatile platform for both oil/water and oil/oil separation[J]. Journal of Membrance Science,2021,637:119624. doi: 10.1016/j.memsci.2021.119624
    [7] ZOU J H, CHEN J H, WEN X F, et al. Advanced materials for separation of oil/water emulsion[J]. Progress in Chemistry,2019,31(10):1440-1458.
    [8] 党钊, 刘利彬, 向宇, 等. 超疏水-超亲油材料在油水分离中的研究进展[J]. 化工进展, 2016, 35(1):1440-1458.

    DANG Zhao, LIU Libin, XIANG Yu, et al. Progress of superhydrophobic-superoleophilic materials for oil/water separation[J]. Chemical Industry and Engineering Progress,2016,35(1):1440-1458(in Chinese).
    [9] 徐兰芳, 王锋, 于英豪, 等. 超亲水/水下超疏油膜功能材料及其研究进展[J]. 材料导报, 2020, 34(17):17105-17114. doi: 10.11896/cldb.19090150

    XU Lanfang, WANG Feng, YU Yinghao, et al. Research progress on superhydrophilic/underwater superoleophobic functional membrane materials[J]. Materials Reports,2020,34(17):17105-17114(in Chinese). doi: 10.11896/cldb.19090150
    [10] WANG S T, LIU K S, YAO X, et al. Bioinspired surfaces with superwettability: New insight on theory, design, and applications[J]. Chemical Reviews,2015,115(16):8230-8293. doi: 10.1021/cr400083y
    [11] SU B, TIAN Y, JIANG L. Bioinspired interfaces with superwettability: From materials to chemistry[J]. Journal of American Chemical Society,2016,138(6):1727-1748. doi: 10.1021/jacs.5b12728
    [12] SI Y F, DONG Z C, JIANG L. Bioinspired designs of superhydrophobic and superhydrophilic materials[J]. ACS Central Science,2018,4(9):1102-1112. doi: 10.1021/acscentsci.8b00504
    [13] 魏倩, 林韶晖, 冯献社, 等. 超疏水石墨烯/甲醛-三聚氰胺-亚硫酸氢钠共聚物海绵的制备及其在油水分离中的应用[J]. 复合材料学报, 2019, 36(7):1728-1736.

    WEI Qian, LIN Shaohui, FENG Xianshe, et al. Synthesis of suoerhydrophobic graphene/formaldehyde-melamine-sodium bisulfite copolymer sponge and its application as absorbent for oil water separation[J]. Acta Materiae Compositae Sinica,2019,36(7):1728-1736(in Chinese).
    [14] YOKOI N, MANABE K, TENJIMBAYASHI M, et al. Optically transparent superhydrophobic surfaces with enhanced mechanical abrasion resistance enabled by mesh structure[J]. ACS Applied Materials Interfaces,2015,7(8):4809-4816. doi: 10.1021/am508726k
    [15] CASSIE A B D, BASTER S. Wettability of porous surfaces[J]. Transaction of the Faraday Society,1944,40:546-551. doi: 10.1039/tf9444000546
    [16] LIU F, MA M L, ZANG D L, et al. Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation[J]. Carbohydrate Polymers,2014,103:480-487. doi: 10.1016/j.carbpol.2013.12.022
    [17] ZHANG N, ZHOU Y, ZHANG Y N, et al. Dual-templating synthesis of compressible and superhydrophobic spongy polystyrene for oil capture[J]. Chemical Engineering Journal,2018,354:245-253. doi: 10.1016/j.cej.2018.07.184
    [18] WU L, LI L X, LI B C, et al. Magnetic, durable and superhydrophobic polyurethane@Fe3O4@ SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation[J]. ACS Applied Materials & Interfaces,2015,7(8):4936-4946. doi: 10.1021/am5091353
    [19] ZHAO C M, CHEN L, YU C M, et al. Fabrication of hydrophobic NiFe2O4@poly(DVB-LMA) sponge via a Pickering emulsion template method for oil/water separation[J]. Soft Matter,2021,17(8):2327-2339. doi: 10.1039/D0SM01902J
    [20] NIE H R, ZHANG C, LIU Y W, et al. Synthesis of Janus rubber hybrid particles and interfacial behavior[J]. Macromolecules,2016,49(6):2238-2244. doi: 10.1021/acs.macromol.6b00159
    [21] CARRANZA A, PÉREZ-GARCÍA M G, SONG K L, et al. Deep-eutectic solvents as MWCNT delivery vehicles in the synthesis of functional Poly(HIPE) nanocomposites for applications as selective sorbents[J]. ACS Applied Materials & Interfaces,2016,8(45):31295-31303. doi: 10.1021/acsami.6b09589
    [22] CAMERON N R, SHERRINGTON D C, ALBISTON L, et al. Study of the formation of the open-cellular morphology of poly(styrene/divinylbenzene) polyHIPE materials by cryo-SEM[J]. Colloid and Polymer Scienc,2016,274:592-595.
    [23] MENNER A, BISMARCK A. New evidence for the mechanism of the pore formation in polymerising high internal phase emulsions or why polyHIPEs have an interconnected pore network structure[J]. Macromolecular Symposia,2006,242:19-24. doi: 10.1002/masy.200651004
    [24] LI N, QUE Q Y, GAO B Y, et al. One-step synthesis of peanut hull/graphene aerogel for highly efficient oil-water separation[J]. Journal of Cleaner Production,2019,207:764-771. doi: 10.1016/j.jclepro.2018.10.038
    [25] LI Z T, YE M Q, HAN A J, et al. Preparation, characterization and microwave absorption properties of NiFe2O4 and its composites with conductive polymer[J]. Journal of Materials Science: Materials in Electronics,2016,27:1031-1043. doi: 10.1007/s10854-015-3848-8
    [26] KONG L T, MA L, JIN H B, et al. Synthesis of a novel oil-absorption resin and optimization of its performance parameters using response surface design[J]. Polymers for Advanced Technologies,2019,30(6):1441-1452. doi: 10.1002/pat.4576
    [27] MA L B, LUO X G, CAI N, et al. Facile fabrication of hierarchical porous resins via high internal phase emulsion and polymeric porogen[J]. Applied Surface Science,2014,305:186-193. doi: 10.1016/j.apsusc.2014.03.036
    [28] CAO C F, ZHANG G D, ZHAO L, et al. Design of mechanically stable, electrically conductive and highly hydrophobic three-dimensional graphene nanoribbon composites by modulating the interconnected network on polymer foam skeleton[J]. Composites Science and Technology,2019,171:162-170. doi: 10.1016/j.compscitech.2018.12.014
    [29] LV X S, TIAN D H, PENG Y Y, et al. Superhydrophobic magnetic reduced graphene oxide-decorated foam for efficient and repeatable oil-water separation[J]. Applied Surface Science,2019,466:937-945. doi: 10.1016/j.apsusc.2018.10.110
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  536
  • HTML全文浏览量:  203
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 修回日期:  2021-12-20
  • 录用日期:  2022-01-07
  • 网络出版日期:  2022-01-20
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回