留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于反蛋白石结构的功能性薄膜制备及应用研究进展

何文玉 马万彬 向娇娇 张耘箫 柴丽琴 周岚 刘国金

何文玉, 马万彬, 向娇娇, 等. 基于反蛋白石结构的功能性薄膜制备及应用研究进展[J]. 复合材料学报, 2022, 39(6): 2556-2570. doi: 10.13801/j.cnki.fhclxb.20220120.002
引用本文: 何文玉, 马万彬, 向娇娇, 等. 基于反蛋白石结构的功能性薄膜制备及应用研究进展[J]. 复合材料学报, 2022, 39(6): 2556-2570. doi: 10.13801/j.cnki.fhclxb.20220120.002
HE Wenyu, MA Wanbin, XIANG Jiaojiao, et al. Research progress in preparation and application of functional films based on inverse opal structure[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2556-2570. doi: 10.13801/j.cnki.fhclxb.20220120.002
Citation: HE Wenyu, MA Wanbin, XIANG Jiaojiao, et al. Research progress in preparation and application of functional films based on inverse opal structure[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2556-2570. doi: 10.13801/j.cnki.fhclxb.20220120.002

基于反蛋白石结构的功能性薄膜制备及应用研究进展

doi: 10.13801/j.cnki.fhclxb.20220120.002
基金项目: 国家自然科学基金(52003242);浙江省自然科学基金(LQ19E030022;LY20E030006);国家重点研发计划“高端功能与智能材料”重点专项(2021YFB3801500);2020年国家级大学生创新创业训练计划项目
详细信息
    通讯作者:

    刘国金,博士,副教授,研究方向是亲水性过滤膜的开发与应用 E-mail:guojin900618@163.com

  • 中图分类号: TB34

Research progress in preparation and application of functional films based on inverse opal structure

  • 摘要: 作为光子晶体的一种典型结构,基于反蛋白石(IO)结构构筑的功能性薄膜呈现典型的周期性排列,除具有微孔大小均一、孔隙率高、孔径易灵活调控等优势外,还具有一些特殊的光学性质。近年来,IO结构膜引起了检测、防伪、药物输送、过滤等领域的广泛关注。本文首先概述了IO型膜的结构特点和光学特性,然后重点介绍了IO结构膜的制备方法并将其概括为“三步法”和“两步法”,接着详细总结了IO型膜在结构生色、传感器、电致变色、光催化和医学载体五方面的应用进展,最后对其未来的研究方向和发展趋势作出了展望。本研究可为IO型功能性薄膜的推广和应用提供策略支撑。

     

  • 图  1  相转化法制备所得的聚偏氟乙烯(PVDF)膜 (a)和反蛋白石结构PVDF膜 (b)

    Figure  1.  PVDF film by phase-inversion method (a) and inverse opal PVDF film (b)

    图  2  蛋白石与反蛋白石构型 (a)[43]、三步法制备反蛋白石结构膜 (b) [44]和两步法制备反蛋白石结构膜 (c)

    Figure  2.  Opal and inverse opal structures (a)[43], preparation of inverse opal films by the three-step method (b) [44], preparation of inverse opal films by the two-step method (c)

    图  3  重力沉积法组装蛋白石结构模板[45]

    Figure  3.  Assembly of opal templates by gravitational deposition method[45]

    图  4  垂直沉积法组装蛋白石结构模板[45]

    Figure  4.  Assembly of opal templates by vertical deposition method[45]

    图  5  旋涂法制备蛋白石结构模板[46]

    Figure  5.  Preparation of opal templates by spin-coating[46]

    图  6  旋涂-提拉法制备聚苯乙烯(PS)单层胶体晶体(MCC)模板[47]

    Figure  6.  Preparation of polystyrene (PS) MCC template by combining a spin-coating and lifting-up method[47]

    图  7  优化旋涂参数后制得的单层晶体模板[46]

    Figure  7.  Monolayer crystal template by optimizing the parameters of spin-coating[46]

    图  8  喷涂法制备SnO2微球层示意图[43]

    Figure  8.  Schematic diagram of the preparation of SnO2 microspheres by spray-coating[43]

    图  9  喷涂不同质量分数聚(苯乙烯-甲基丙烯酸)(P(St-MAA))预组装液所得的蛋白石光子晶体[49]

    Figure  9.  Opal photonic crystal by spray-coating different mass fractions poly(styrene-methacrylate)(P(ST-MAA)) pre-assembly solution[49]

    图  10  溶剂蒸发法制备丝素蛋白反蛋白石结构膜[38]

    Figure  10.  Silk inverse opal structure films by solvent evaporation methods[38]

    PMMA—Polymethyl methacrylate

    图  11  不同热处理温度下的聚偏氟乙烯(PVDF)反蛋白石结构膜[50]

    Figure  11.  Polyvinylidene fluoride (PVDF) inverse opal films under different temperature conditions[50]

    图  12  碳纳米球蛋白石 (a)、以碳纳米球为模板制得的TiO2反蛋白石结构膜 (b)、PS微球蛋白石 (c) 和以PS微球为模板制得的TiO2反蛋白石结构膜 (d) 的SEM图像[53]

    Figure  12.  SEM images of the samples carbon sphere opal (a), TiO2 inverse opal films from carbon sphere (b), PS sphere opal (c) and TiO2 inverse opal films from PS (d)[53]

    图  13  新型填充法制备反蛋白结构膜聚乳酸-羟基乙酸共聚物(PLGA)反蛋白石结构膜 (a)[61];SU-8反蛋白石结构膜 (b)[62]

    Figure  13.  A novel method for preparation of inverse opal films polylactic acid-glycolic acid copolymer (PLGA) inverse opal films (a)[61]; SU-8 inverse opal films (b)[62]

    图  14  蒸法诱导共组装法制备混合金属氧化物反蛋白石结构膜[64]

    Figure  14.  Schematic illustration of the fabrication process for mixed metal oxide inverse opals films by evaporation indued assembly method[64]

    图  15  不同TiO2/SiO2前驱体混合比例下的杂化反蛋白石结构膜的SEM图像[64]

    Figure  15.  SEM images of mixed metal oxide inverse opals films with different molar ratios of titania to silica precursors[64]

    图  16  三步法制备彩色PVDF反蛋白石结构膜[67]

    Figure  16.  Schematic illustration of the routine to prepare the colored PVDF inverse opal films by three-step method[67]

    3DPC—3D photonic crystal; HMPA—Hexamethylphosphoramide; CB—Carbon black

    图  17  观测角度为5° (a) 和10° (b) 下贴有彩色PVDF膜的纸币照片[67]

    Figure  17.  Photos of banknotes with colored PVDF film at observation angles were 5° (a) and 10° (b)[67]

    图  18  观测角度分别为10°和40°下蓝、绿、红色反蛋白石结构膜的照片[68]

    Figure  18.  Optical photographs of blue, green and red inverse opal films with the shooting angle of 10° and 40°[68]

    图  19  有机-无机复合响应型水凝胶(SRPH)薄膜在不同有机溶剂下的光学照片[69]

    Figure  19.  Optical photographs of organic-inorganic composite responsive hydrogel (SRPH) film discoloration in response to different organic solvents[69]

    图  20  三步法制备ZnO/苯胺黑(AB)-PVDF复合反蛋白石结构膜 (a);SiO2光子晶体模板 (b)、填充AB-PVDF后的SiO2光子晶体模板 (c)、0.5%AB-PVDF反蛋白石结构膜 (d) 和ZnO/0.5%AB-PVDF反蛋白石结构膜 (e) 的SEM图像[76]

    Figure  20.  Preparation process illustration of the ZnO/aniline black (AB)-PVDF inverse opal film by three-step method (a); SEM images of the silica photonic crystal template(b), silica photonic crystal template after AB-PVDF infiltration(c), 0.5%AB-PVDF inverse opal film(d)and ZnO/0.5%AB-PVDF inverse opal film (e)[76]

    图  21  TiO2反蛋白石结构膜 (a) 和Ag/TiO2反蛋白石结构膜 (b) 的SEM图像[37]

    Figure  21.  SEM images of TiO2 inverse opal film (a) and Ag/TiO2 inverse opal film (b)[37]

    图  22  PVDF平板膜 (a)、拉伸倍数分别为0 (b)、3 (c) 和6 (d) 倍的PVDF反蛋白石结构膜的SEM图像[44]

    Figure  22.  SEM images of PVDF inverted opal membrane with PVDF flat membrane (a) and stretching ratio of 0 (b), 3 (c) and 6 (d), respectively[44]

    图  23  神经干细胞在PVDF平板膜 (a)、拉伸倍率分别为0 (b)、3 (c)、6 (d) 倍的PVDF反蛋白石结构膜上的分化情况[44]

    Figure  23.  Differentiation of neural stem cells on PVDF flat membrane (a), PVDF reverse opal membrane with 0 (b), 3 (c) and 6 (d) tensile ratios, respectively[44]

    图  24  220 nm (a)、250 nm (b) 和300 nm (c)粒径模板所得PLGA反蛋白石结构膜在释放药物前后的反射率曲线[79]

    Figure  24.  Reflectance curves of PLGA reverse opal structures obtained from 220 nm (a), 250 nm (b) and 300 nm (c) particle size templates before and after drug release[79]

  • [1] LIU W, MA H L, WALSH A. Advance in photonic crystal solar cells[J]. Renewable and Sustainable Energy Reviews,2019,116:109436. doi: 10.1016/j.rser.2019.109436
    [2] CERSONSKY R K, JAMES A, DICE B D. The diversity of three-dimensional photonic crystals[J]. Nature Communications,2021,12(1):2543. doi: 10.1038/s41467-021-22809-6
    [3] 陈佳颖, 辛斌杰, 辛三法, 等. 基于光子晶体的结构色织物研究进展[J]. 纺织学报, 2020, 41(04):181-187.

    CHENG Jiaying, XIN Binjie, XIN Sanfa, et al. Research progress in structurally colored fabrics using photonic crystals[J]. Journal of Textile Research,2020,41(04):181-187(in Chinese).
    [4] DAKOTA E M, TERESA F, TODD A H, et al. Structural absorption by barbule microstructures of super black bird of paradise feathers[J]. Nature Communications,2018,9(1):733. doi: 10.1038/s41467-018-03194-z
    [5] SHANG L R, ZHANG W X, XU K, et al. Bio-inspired intelligent structural color materials[J]. Materials Horizons,2019,6(5):945-958. doi: 10.1039/C9MH00101H
    [6] LIU P M, BAI L, YANG J J, et al. Self-assembled colloidal arrays for structural color[J]. Nanoscale Advance,2019,1(5):1672-1685. doi: 10.1039/C8NA00328A
    [7] RAUT H K, WANG H, RUAN Q F, et al. Hierarchical colorful structures by three-dimensional printing of inverse opals[J]. Nano Letters,2021,21(20):8602-8608. doi: 10.1021/acs.nanolett.1c02483
    [8] ZHOU C T, QI Y, ZHANG, S F, et al. Lotus seedpod inspiration: particle-nested double-inverse opal films with fast and reversible structural color switching for information security[J]. ACS Applied Materials & Interfaces,2021,13(22):26384-26393.
    [9] 丁姣. 纺织品上反蛋白石结构光子晶体的制备研究[D]. 杭州: 浙江理工大学, 2018.

    DING Jiao. Study on the preparation of the inverse opal photonic crystals on textiles[D]. Hangzhou: Zhejiang Sci-Tech University, 2018(in Chinese).
    [10] LIM S Y, LAW C S, LIU L N, et al. Integrating surface plasmon resonance and slow photon effects in nanoporous anodic alumina photonic crystals for photocatalysis[J]. Catalysis Science and Technology,2019,9(12):3158-3176. doi: 10.1039/C9CY00627C
    [11] LI J F, WANG J, WANG X T, et al. Bandgap engineering of TiO2 nanotube photonic crystals for enhancement of photocatalytic capability[J]. CrystEngComm,2020,22(11):1929-1938. doi: 10.1039/C9CE01828J
    [12] ARSENAULT A C, CLARK T J, VON F G, et al. From colour fingerprinting to the control of photoluminescence in elas-tic photonic crystals[J]. Nature Materials,2006,5(3):179-184. doi: 10.1038/nmat1588
    [13] DAVID M, VICTOR L, SIGITA T. Simplifying the synthesis of carbon inverse opals[J]. RSC Advance,2020,10(40):24108-24114. doi: 10.1039/D0RA03693E
    [14] MAKSYM D, KATRIN B, VASYL S, et al. Mesh-free micromechanical modeling of inverse opal structures[J]. International Journal of Mechanical Sciences,2021,204:10657.
    [15] ZHANG J, LI Z Y, ZHAN K, et al. Two dimensional nanomaterial-based separation membranes[J]. Electrophoresis,2019,40:2029-2040. doi: 10.1002/elps.201800529
    [16] 罗龙飞, 李玉洁, 沈志豪, 等. 偶氮苯液晶嵌段共聚物薄膜自组装和光响应性研究进展[J]. 应用化学, 2021, 38(10):1238-1254.

    LUO Longfei, LI Yujie, SHEN Zhihao, et al. Research progress in self-assembly and photo-responsiveness of azobenzene liquid crystal block copolymer thin films[J]. Chinese Journal of Applied Chemistry,2021,38(10):1238-1254(in Chinese).
    [17] 程熠, 王坤, 亓月, 等. 石墨烯纤维材料的化学气相沉积生长方法[J]. 物理化学学报, 2022, 38(2):2006046.

    CHENG Yi, WANG Kun, QI Yue, et al. Chemical vapor deposition method for graphene fiber material[J]. Acta Physico-Chimica Sinica,2022,38(2):2006046(in Chinese).
    [18] HOU Y Q, WANG Q X, WANG S L. Hydrophilic carbon nanotube membrane enhanced interfacial evaporation for desalination[J]. Chinese Chemical Letters, 2021, 33(4): 2155-2158.
    [19] HOU X. Smart gating multi-scale pore/channel-based membranes[J]. Advanced Materials,2016,28(33):7049-7064. doi: 10.1002/adma.201600797
    [20] WANG M, MENG H Q, WANG D, et al. Dynamic curvature nanochannel-based membrane with anomalous ionic transport behaviors and reversible rectification switch[J]. Advanced Materials,2019,31(11):1805130. doi: 10.1002/adma.201805130
    [21] AMIR N, SERENA M, SINDU S, et al. Nanostructured fibrous membranes with rose spike-like architecture[J]. Nano Letters,2017,17(10):6235-6240. doi: 10.1021/acs.nanolett.7b02929
    [22] XU F, YANG J, DONG R Z, et al. Wave-shaped piezoelectric nanofiber membrane nanogenerator for acoustic detection and recognition[J]. Advanced Fiber Materials,2021,3:368-380. doi: 10.1007/s42765-021-00095-7
    [23] 林山, 朱仁霞, 马丹阳, 等. MOFs改性玻璃纤维膜的制备及其在锂硫电池隔膜中的应用[J]. 浙江理工大学学报(自然科学版), 2019, 41(5):615-622.

    LIN Shan, ZHU Renxia, MA Danyang, et al. Preparation of glass fiber membrane modified by metal organic frameworks and its application in diaphragm of lithium-sulfur batteries[J]. Journal of Zhejiang Sci-Tech University(Nature Sciences Edition),2019,41(5):615-622(in Chinese).
    [24] 康静, 骆菁菁, 熊杰. 氧化锆@生物活性玻璃/碳纳米纤维复合膜的制备及其性能[J]. 浙江理工大学学报(自然科学版), 2020, 43(5):609-617.

    KANG Jing, LUO Jingjing, XIONG Jie. Preparation and properties of zirconia@bioactive glass/carbon nanofiber membranes[J]. Journal of Zhejiang Sci-Tech University(Nature Sciences Edition),2020,43(5):609-617(in Chinese).
    [25] 曹元鸣, 郑蜜, 李一飞, 等. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(9):46-51, 58.

    CAO Yuanming, ZHENG Mi, LI Yifei, et al. Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties[J]. Journal of Textile Research,2021,42(9):46-51, 58(in Chinese).
    [26] LIU W, WANG M, SHENG Z Z, et al. Mobile liquid gating membrane system for smart piston and valve applications[J]. Industrial & Engineering Chemistry Research,2019,58:11976-11984.
    [27] SHENG Z Z, ZHANG J, LIU J, et al. Liquid-based porous membranes[J]. Chemical Society Reviews,2020,49:7907-7928. doi: 10.1039/D0CS00347F
    [28] HOU X. Liquid gating membrane[J]. National Science Review,2020,7:9-11. doi: 10.1093/nsr/nwz197
    [29] LV W, SHENG Z Z, ZHU Y L, et al. Highly stretchable and reliable graphene oxide-reinforced liquid gating membranes for tunable gas/liquid transport[J]. Microsystems & Nanoengineering,2020,6(3):81-91.
    [30] WANG C Y, WANG S L, PAN H, et al. Bioinspired liquid gating membrane-based catheter with anticoagulation and positionally drug release properties[J]. Science Advances,2020,6(36):eabb4700. doi: 10.1126/sciadv.abb4700
    [31] WANG S L, ZHANG Y M, HAN Y H, et al. Design of porous membranes by liquid gating technology[J]. Accounts of Materials Research,2021,2:407-419. doi: 10.1021/accountsmr.1c00024
    [32] CHEN B Y, ZHANG R G, HOU Y Q, et al. Light-responsive and corrosion-resistant gas valve with non-thermal effective liquid-gating positional flow control[J]. Light: Science & Applications,2021,10(7):1155-1163.
    [33] LIU J, XU X, LEI Y, et al. Liquid gating meniscus-shaped deformable magnetoelastic membranes with self-driven regulation of gas/liquid release[J]. Advanced Materials,2021,34(3):2107327.
    [34] 杨畅, 夏炎. “膜”法世界——膜材料的发展与应用[J]. 化学教育(中英文), 2021, 42(10):1-6.

    YANG Chang, XIA Yan. The world of “membrane”-the development and application of membrane materials[J]. Chinese Journal of Chemical Education (Chinese and English),2021,42(10):1-6(in Chinese).
    [35] 陈翠仙, 郭红霞, 秦培勇, 等. 膜分离[M]. 北京: 化学工业出版社, 2017.

    CHEN Cuixian, GUO Hongxia, QING Peiyong, et al. Membrane separation[M]. Beijing: Chemical Industry Press, 2017(in Chinese).
    [36] WANG X Y, HUSSON S M, QIAN X H, et al. Inverse colloidal crystal microfiltration films[J]. Journal of Film Science,2010,365(1):302-310.
    [37] LE T H, THANH T B, HAO V B, et al. TiO2 inverse opals modified by Ag nanoparticles: A synergic effect of enhanced visible-light absorption and efficient charge separation for visible-light photocatalysis[J]. Catalysts,2021,11(7):761. doi: 10.3390/catal11070761
    [38] KIM S, ALEXANDER N M, JOSHUA D S, et al. Silk inverse opals[J]. Nature Photonics, 2012, 6(12): 818-823.
    [39] ALEX L, CHANG H, COLM O D, et al. Filling in the gaps: The nature of light transmission through solvent-filled inverse opal photonic crystals[J]. Physical Review Materials,2020,4(6):5201-5225.
    [40] THARISHINNY R M, ANAIS L, MAI K, et al. Slow photon-induced enhancement of photocatalytic activity of gold nanoparticle-incorporated titania inverse opal[J]. Chemistry Letters,2021,50(4):711-713. doi: 10.1246/cl.200804
    [41] PARISA G, REZA K, VALIOLLAH M, et al. Efficient colorful perovskite solar cells designed by 2D and 3D ordered titania inverse opals[J]. Journal of Power Sources,2021,512:230488. doi: 10.1016/j.jpowsour.2021.230488
    [42] SERGEY K, ALEXANDER B, LAD V N, et al. Photonic and plasmonic effects in inverse opal films with Au nanoparticles[J]. Photonics and Nanostructures-Fundamentals and Applications,2021,43:100899. doi: 10.1016/j.photonics.2021.100899
    [43] 柴丽琴. 基于ZrO2反蛋白石光子晶体构建的纺织品仿生结构生色研究[D]. 杭州: 浙江理工大学, 2019.

    CHAI Liqin. Study on the bionic structural coloration of textiles based on the fabrication of ZrO2 inverse opal photonic crystals[D]. Hangzhou: Zhejiang Sci-Tech University, 2019(in Chinese).
    [44] XIA L, SHANG Y X, CHEN X B, et al. Oriented neural spheroid formation and differentiation of neural stem cells guided by anisotropic inverse opals[J]. Frontiers in Bioengineering and Biotechnology,2020,8:848.
    [45] 吴玉江. SiO2胶体微球的制备及其在纺织品上自组装结构生色中的应用[D]. 杭州: 浙江理工大学, 2016.

    WU Yujiang. The preparation of SiO2 colloidal microspheres and its application of structural coloration on textile by self-assembly[D]. Hangzhou: Zhejiang Sci-Tech University, 2016(in Chinese).
    [46] GALLE L, EHRLING S, LOCHMANN S, et al. Conductive ITO interfaces for optoelectronic applications based on highly ordered inverse opal thin films[J]. Chemnanomat,2020,6(4):560. doi: 10.1002/cnma.201900731
    [47] ZHANG X H, YU L, ZHANG W, et al. Fabrication of large-scale PS monolayer colloidal crystal film by using a novel secondary self-assembly method for nanoimprint technique[J]. Journal of Crystal Growth,2019,508:82-89. doi: 10.1016/j.jcrysgro.2018.12.031
    [48] FAN X Y, RUI Y C, HAN X F, et al. Spray-coated monodispersed SnO2 microsphere films as scaffold layers for efficient mesoscopic perovskite solar cells[J]. Journal of Power Sources,2020,448:227405.
    [49] 高雅芳, 张耘箫, 刘国金, 等. 光子晶体结构生色纺织品的快速制备及其性能表征[J]. 浙江理工大学学报(自然科学版), 2021, 45(02):157-163.

    GAO Yafang, ZHANG Yunxiao, LIU Guojin, et al. Rapid preparation and characterization of chromogenic textiles with photonic crystal structure[J]. Journal of Zhejiang Sci-Tech University(Nature Sciences Edition),2021,45(02):157-163(in Chinese).
    [50] YAO J T, WANG J, JI M W. Temperature tunable photonic band gap in polyvinylidene fluoride inverse opals[J]. RSC Advances,2016,6(108):106370-106373. doi: 10.1039/C6RA24011A
    [51] YU J, LEI J Y, WANG L Z, et al. TiO2 inverse opal photonic crystals: Synthesis, modification, and applications-A review[J]. Journal of Alloys and Compounds,2018,769:740-757. doi: 10.1016/j.jallcom.2018.07.357
    [52] KYUJIN K, YANG S C. Piezoelectric inverse opal BaTiO3 films using one-drop spin-coated polystyrene-polydimethylsiloxane particle array templates[J]. Thin Solid Films,2019,689:137525. doi: 10.1016/j.tsf.2019.137525
    [53] MCNULTY D, GEANEY H, RAMASSE Q, et al. Long cycle life, highly ordered SnO2/GeO2 nanocomposite inverse opal anode materials for Li-ion batteries[J]. Advanced Functional Materials,2020,30:2005073. doi: 10.1002/adfm.202005073
    [54] LI J Y, XIE K, XU J, et al. Mid infrared band gap properties of 3-dimensional silicon inverse opal photonic crystal[J]. Applied Physis A,2010,99:117-123. doi: 10.1007/s00339-010-5565-8
    [55] SONG T, JEON Y, SAMAL M, et al. A Ge inverse opal with porous walls as an anode for lithium ion batteries[J]. Energy Environmental Science,2012,5:9028. doi: 10.1039/c2ee22358a
    [56] BIRNAL P, MARCO D L, POCHARD I, et al. Photocatalytic properties of atomic layer deposited TiO2 inverse opals and planar films for the degradation of dyes[J]. Applied Surface Science,2020,512:145693. doi: 10.1016/j.apsusc.2020.145693
    [57] BAKOS L P, KARAJZ D, KATONA A, et al. Carbon nanosphere templates for the preparation of inverse opal titania photonic crystals by atomic layer deposition[J]. Applied Surface Science,2020,504:144443. doi: 10.1016/j.apsusc.2019.144443
    [58] WALECZEK M, DENDOOVEN J, DYACHENKO P, et al. Influence of alumina addition on the optical properties and the thermal stability of titania thin films and inverse opals produced by atomic layer deposition[J]. Nanomaterials,2021,11(4):1053. doi: 10.3390/nano11041053
    [59] MA B, LI Y, ZHAO J P, et al. Novel structural functional films based on self-assembly template and electrodeposition: Synthesis and characterization of porous Ni/YSZ films[J]. Thin Solid Films,2009,517:5172-5175. doi: 10.1016/j.tsf.2009.03.076
    [60] MOHAMMAD A Z, RIHAB A S, LI Y, et al. Highly ordered 3D-macroporous poly(para-phenylene) films made by electropolymerization of benzene in an ionic liquid[J]. Journal of Research in Physical Chemistry & Chemical Physics,2011,225:393-403.
    [61] KIM J W, JOON S L, SHIN H K. Biodegradable inverse opals with controlled discoloration[J]. Advanced Materials Interfaces, 2018, 5(10): 1701658.
    [62] LEE S Y, LEE J S, KIM S H. Colorimetric recording of thermal conditions on polymeric inverse opals[J]. Advanced Materials, 2019, 31(30): 1901398.
    [63] PAN M Y, WANG C Y, HU Y F, et al. Dual optical information-encrypted/decrypted invisible photonic patterns based on controlled wettability[J]. Advanced Optical Materials, 2021, 10(2): 2101268.
    [64] PHILLIPS K R, SHIRMAN T, MICHAEL A, et al. Silica-titania hybrids for structurally robust inverse opals with controllable refractive index[J]. Journal of Materials Chemistry C,2020,8(1):109-116. doi: 10.1039/C9TC05103A
    [65] LUO D, CHEN Q, QIU Y, et al. Carbon dots-decorated Bi2WO6 in an inverse opal film as a photoanode for photoelectrochemical solar energy conversion under visible-light irradiation[J]. Materials,2019,12(10):1713-1723. doi: 10.3390/ma12101713
    [66] 王晓辉, 李义臣, 刘国金, 等. 柔性光子晶体结构生色膜的制备及其光学性质[J]. 纺织学报, 2021, 42(2):12-20.

    WANG Xiaohui, LI Yichen, LIU Guojin, et al. Preparation and optical properties of flexible photonic crystal film for structural colors[J]. Journal of Textile Research,2021,42(2):12-20(in Chinese).
    [67] MENG YAO, LIU F F, UMAIR M M, et al. Patterned and iridescent plastics with 3D inverse opal structure for anticounterfeiting of the banknotes[J]. Advanced Optical Materials,2018,6(8):1701351. doi: 10.1002/adom.201701351
    [68] LIU F F, SHAN B, ZHANG S F, et al. SnO2 inverse opal composite film with low-angle-dependent structural color and enhanced mechanical strength[J]. American Chemical Society,2018,34(13):3918-3924.
    [69] GUO M, YU X Q, ZHAO J, et al. Versatile titanium dioxide inverse opal composite photonic hydrogel films towards multi-solvents chip sensors[J]. Sensors and Actuators B: Chemical,2021,347:130639. doi: 10.1016/j.snb.2021.130639
    [70] LIU J Q, ZHANG Y Q, ZHOU R, et al. Volatile alcohol-responsive visual sensors based on P(HEMA-co-MA)-infiltrated SiO2 inverse opal photonic crystals[J]. Journal of Materials Chemistry C,2017,5:6071-6078. doi: 10.1039/C7TC00891K
    [71] 秦咪咪. 光子晶体结构电致变色材料的制备及其电致变色性能研究[D]. 北京: 北京服装学院, 2016.

    QIN Mimi. Preparation and property investigation of electrochromic materials based on photonic crystal structure[D]. Beijing: Beijing Institute of Fashion Technology, 2016(in Chinese).
    [72] ZHAN Y H, YANG Z W, XU Z, et al. Electrochromism induced reversible upconversion luminescence modulation of WO3: Yb3+, Er3+ inverse opals for optical storage application[J]. Chemical Engineering Journal,2020,394:124967. doi: 10.1016/j.cej.2020.124967
    [73] LING H, YEO L P, WANG Z W, et al. TiO2-WO3 core-shell inverse opal structure with enhanced electrochromic performance in NIR region[J]. Journal of Materials Chemistry C,2018,6:8488-8494.
    [74] 宋云. 三维有序反蛋白石材料的制备及其对水体有机污染物的可见光催化降解性能研究[D]. 苏州: 苏州大学, 2019.

    SONG Yun. Preparation of 3D ordered inverse opal composite and its application in visible-light-driven photocatalytic degradation of organic contaminants[D]. Soochow: Soochow University, 2019(in Chinese).
    [75] 李会鹏, 孙新宇, 赵华, 等. 反蛋白石结构光催化剂的制备与应用进展[J]. 分子催化, 2021, 35(1):65-75.

    LI Huipeng, SUN Xinyu, ZHAO Hua, et al. Progress in the preparation and application of inverse opal structure photocatalysts[J]. Journal of Molecular Catalysis(China),2021,35(1):65-75(in Chinese).
    [76] CHEN Y K, WANG Y, FANG J J, et al. Design of a ZnO/poly(vinylidene fluoride) inverse opal film for photon localization-assisted full solar spectrum photocatalysis[J]. Chinese Journal of Catalysis,2021,42(1):184-192. doi: 10.1016/S1872-2067(20)63588-4
    [77] ZHANG Y S, ZHU C LI, XIA Y N. Inverse opal scaffolds and their biomedical applications[J]. Advanced Materials,2017,29:1701115. doi: 10.1002/adma.201701115
    [78] 商逸璇. 基于各向异性的反蛋白石薄膜的心肌细胞培养研究[D]. 南京: 东南大学, 2019.

    SHANG Yixuan. Cardiomyocyte culture based on anisotropic inverse opal film[D]. Nanjing: Southeast University, 2019(in Chinese).
    [79] WENG W Q, CHI J J, YU Y R, et al. Multifunctional compo-site inverse opal film with multiactives for wound healing[J]. ACS Applied Materials & Interfaces,2021,13(3):4567-4573.
    [80] XU C, ZHANG Y, PANG Y S, et al. Facile synthesis of nanoporous NiS film with inverse opal structure as efficient counter electrode for DSSCs[J]. Materials,2020,13(20):4647. doi: 10.3390/ma13204647
    [81] JIN J S, ZHAO L R, LIU Y Y, et al. Double-layer TiO2 inverse opal-based quantum dot-sensitized solar cells[J]. Journal of Solid State Electrochemistry,2021,25(1):291-299. doi: 10.1007/s10008-020-04806-9
    [82] SHAHSAFI A, JOE G, BRANDT S, et al. Wide-angle spectrally selective absorbers and thermal emitters based on inverse opals[J]. ACS Photonics,2019,6(11):2607-2611. doi: 10.1021/acsphotonics.9b00922
    [83] KIM Y, KIM M J, KIM Y S, et al. Nanostructured radiation emitters: Design rules for high-performance thermophotovoltaic systems[J]. ACS Photonics,2019,6(9):2260-2267. doi: 10.1021/acsphotonics.9b00560
  • 加载中
图(24)
计量
  • 文章访问数:  2262
  • HTML全文浏览量:  884
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-26
  • 修回日期:  2021-12-23
  • 录用日期:  2022-01-11
  • 网络出版日期:  2022-01-20
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回