留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性Fe3O4纳米复合材料的制备及其对Pb(II)的吸附

包国庆 吴纯鑫 赵德明

包国庆, 吴纯鑫, 赵德明. 磁性Fe3O4纳米复合材料的制备及其对Pb(II)的吸附[J]. 复合材料学报, 2023, 40(1): 219-231. doi: 10.13801/j.cnki.fhclxb.20220117.001
引用本文: 包国庆, 吴纯鑫, 赵德明. 磁性Fe3O4纳米复合材料的制备及其对Pb(II)的吸附[J]. 复合材料学报, 2023, 40(1): 219-231. doi: 10.13801/j.cnki.fhclxb.20220117.001
BAO Guoqing, WU Chunxin, ZHAO Deming. Preparation of magnetic Fe3O4 nanocomposites and their adsorption to Pb(II)[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 219-231. doi: 10.13801/j.cnki.fhclxb.20220117.001
Citation: BAO Guoqing, WU Chunxin, ZHAO Deming. Preparation of magnetic Fe3O4 nanocomposites and their adsorption to Pb(II)[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 219-231. doi: 10.13801/j.cnki.fhclxb.20220117.001

磁性Fe3O4纳米复合材料的制备及其对Pb(II)的吸附

doi: 10.13801/j.cnki.fhclxb.20220117.001
基金项目: 浙江省自然科学基金项目(LY19B070006);浙江省基础公益研究计划项目(LGF20B070003)
详细信息
    通讯作者:

    赵德明,博士,副教授,硕士生导师,研究方向为清洁生产工艺、环境污染治理技术 E-mail: dmzhao@zjut.edu.cn

  • 中图分类号: X78;TQ138.1

Preparation of magnetic Fe3O4 nanocomposites and their adsorption to Pb(II)

Funds: Zhejiang Natural Science Foundation (LY19B070006); Zhejiang Basic Public Welfare Research Program (LGF20B070003)
  • 摘要: 为解决磁性纳米Fe3O4易被腐蚀、团聚等问题,可对其进行功能化修饰。在超声波辐照下首先制备磁性纳米Fe3O4颗粒,然后选用2,5-二氨基苯磺酸(SP)和间苯二胺(mPD)单体为引入剂进行功能化修饰,制备得到富含氨基、磺酸基和亚氨基活性官能团的金属基复合材料Fe3O4-mPD/SP(95∶5),并采用FTIR、TEM、XRD等手段对其进行表征,证实了超声波辐照法制得的磁性纳米复合材料具有稳定性好、反应活性高、粒径小和比表面积更大等特点。同时考察其对Pb(II)的吸附性能,结果表明:mPD和SP摩尔比、溶液pH值、竞争性阳离子种类和反应温度等因素均会影响吸附效果;等温吸附过程符合Freundlich模型,吉布斯自由能∆G0<0,吸附是一个自发过程;Pb(II)的吸附行为符合准二级动力学,速率常数k2=3.61×10−3 g·mg−1·min−1,平衡吸附量qe=63.297 mg·g−1;推测得到吸附机制主要为离子交换、络合吸附和静电引力等。

     

  • 图  1  磁性纳米Fe3O4颗粒的表面功能化

    Figure  1.  Surface functionalization of magnetic Fe3O4 nanoparticles

    SP—2-diaminobenzenesulfonic acid; mPD—m-phenylenediamine

    图  2  Fe3O4和无超声波辐照、引入超声波辐照制备的Fe3O4-mPD/SP(95∶5)的XRD图谱

    Figure  2.  XRD patterns of Fe3O4 and Fe3O4-mPD/SP(95∶5) prepared without ultrasonic irradiation and introducing ultrasonic irradiation

    图  3  不同方法制备的Fe3O4-mPD/SP(95∶5)纳米复合材料反应前的TEM图像

    Figure  3.  TEM images of Fe3O4-mPD/SP(95∶5) nanocomposites prepared by different methods before reaction

    图  4  Fe3O4和无超声波辐照、引入超声波辐照制备的Fe3O4-mPD/SP(95∶5)和Fe3O4-mPD/SP(50∶50)反应前红外图谱

    Figure  4.  Infrared spectra of fresh Fe3O4 and Fe3O4-mPD/SP(95∶5) and Fe3O4-mPD/SP(50∶50) prepared without ultrasonic irradiation and introducing ultrasonic irradiation before reaction

    图  5  Fe3O4和无超声波辐照、引入超声波辐照制备的Fe3O4-mPD/SP(95∶5)反应前热重图

    Figure  5.  Thermogravimetric spectra of fresh Fe3O4 and Fe3O4-mPD/SP(95∶5) prepared without ultrasonic irradiation and introducing ultrasonic irradiation before reaction

    图  6  Fe3O4和无超声波辐照、引入超声波辐照制备的Fe3O4-mPD/SP(50∶50)和Fe3O4-mPD/SP(95∶5)磁滞回线图谱

    Figure  6.  Hysteresis loop spectra of Fe3O4 and Fe3O4-mPD/SP(50∶50) and Fe3O4-mPD/SP(95∶5) prepared without ultrasonic irradiation and introducing ultrasonic irradiation

    图  7  无超声波辐照、引入超声波辐照制备的Fe3O4-mPD/SP(95∶5)对Pb(II)的吸附效果

    Figure  7.  Adsorption effect of Fe3O4-mPD/SP(95∶5) prepared without ultrasonic irradiation and introducing ultrasonic irradiation on Pb(II)

    qt—Adsorption capacity at time t; t—Reaction time

    图  8  不同mPD/SP单体比例对Fe3O4-mPD/SP吸附 Pb(II)影响

    Figure  8.  Effects of different mPD/SP monomer ratios on Pb(II) adsorption by Fe3O4-mPD/SP

    qe—Equilibrium adsorption capacity

    图  9  pH值对Fe3O4-mPD/SP(95∶5)吸附Pb(II)的影响

    Figure  9.  Effect of pH value on Pb(II) adsorption by Fe3O4-mPD/SP(95∶5)

    图  10  竞争性离子对Fe3O4-mPD/SP(95∶5)吸附Pb(II)的影响

    Figure  10.  Effect of competitive ions on Pb(II) adsorption by Fe3O4-mPD/SP(95∶5)

    Ce—Equilibrium concentration

    图  11  Fe3O4-mPD/SP(95∶5)吸附Pb(II)的量随时间变化曲线及吸附动力学模型拟合

    Figure  11.  Time-dependent curve of Pb(II) amount by Fe3O4-mPD/SP(95∶5) and the fitting of adsorption kinetic model

    图  12  Fe3O4-mPD/SP(95∶5)对Pb(II)的吸附等温线及吸附等温线拟合

    Figure  12.  Adsorption isotherm and adsorption isotherm fitting of Pb(II) adsorption by Fe3O4-mPD/SP(95∶5)

    图  13  温度对Fe3O4-mPD/SP(95∶5)吸附Pb(II)的影响

    Figure  13.  Effect of temperature on the adsorption of Pb(II) by Fe3O4-mPD/SP(95∶5)

    图  14  不同Pb(II)初始浓度下lnK0对1/T作图

    Figure  14.  lnK0 plots of 1/T under different initial Pb(II) concentrations

    K0—Thermodynamic equilibrium constant

    图  15  Fe3O4-mPD/SP(95∶5)循环使用次数对吸附Pb(II)的影响

    Figure  15.  Effect of Fe3O4-mPD/SP(95∶5) recycling times on Pb(II) adsorption

    图  16  磁性纳米复合材料Fe3O4-mPD/SP(95∶5)吸附Pb(II)前后的红外图谱

    Figure  16.  Infrared spectra of magnetic nanocomposites Fe3O4-mPD/SP(95∶5) before and after adsorption of Pb(II)

    图  17  功能化磁性纳米复合材料Fe3O4-mPD/SP(95∶5)吸附Pb(II)的机制图

    Figure  17.  Mechanism diagram of adsorption of Pb(II) by functionalized magnetic nanocomposite Fe3O4-mPD/SP(95∶5)

    表  1  不同吸附剂对Pb(II)的吸附容量比较

    Table  1.   Comparison of adsorption capacity of Pb(II) by different adsorbents

    AdsorbentSaturated adsorption capacity/(mg·g−1)Ref.
    Magnetic ion-imprinted and —SH functionalized polymer32.58[3]
    MNPs-Ca-alginate immobilized Phanerochaete chrysosporium56.18[6]
    Magnetic alginate beads50.00[7]
    Fe3O4@SiO2-NH240.10[8]
    Fe3O4@SiO2-NH-COOH34.27[9]
    Magnetic chitosan/graphene oxide76.94[13]
    Fe3O4-mPD/SP(95∶5)95.24This study
    Note: MNPs—Magnetic nanoparticles.
    下载: 导出CSV

    表  2  Pb(II)吸附动力学方程拟合及各参数值

    Table  2.   Pb(II) adsorption kinetic equation fitting and parameters

    Dynamics modelR2Rate constantqe,cal/(mg·g−1)qe,exp/(mg·g−1)
    Quasi-first-order kinetics0.627k1=1.65×10−2 min−1
    Quasi-second-order kinetics0.999k2=3.61×10−3 g·mg−1·min−163.29762.493
    Internal diffusion equation0.557kp=2.005 mg·(g·min1/2)−1
    Notes: qe,cal—Theoretical saturated adsorption capacity; qe,exp—Experimental saturated adsorption capacity; k1—Quasi-first-order kinetic constant; k2—Quasi-second-order kinetic constant; kp—Internal diffusion coefficient; R2—Correlation coefficient.
    下载: 导出CSV

    表  3  Fe3O4-mPD/SP(95∶5)对Pb(II)各吸附动力学模型参数

    Table  3.   Kinetic model parameters of adsorption of Pb(II) by Fe3O4-mPD/SP(95∶5)

    ModelParameters and values
    Langmuir modelKL/(L·mg−1) qm/(mg·g−1)R2
    0.06895.240.979
    Freundlich modelKF/(mg1−(1/n)·L1/n·g−1)1/nR2
    23.530.2680.994
    Temkin modelKtBlR2
    3.51313.550.952
    Notes: KL—Langmuir adsorption constant; KF—Freundlich adsorption coefficient; Kt, Bl—Temkin adsorption isotherm; qm—Saturated adsorption capacity; R2—Linear correlation coefficient; n—Empirical constant.
    下载: 导出CSV

    表  4  Fe3O4-mPD/SP(95∶5)吸附Pb(II)热力学常数

    Table  4.   Thermodynamic constants of Fe3O4-mPD/SP(95∶5) adsorption of Pb(II)

    C0/(mg·L−1)G0/(kJ·mol−1)H0/(kJ·mol−1)S0/(J·mol−1·K−1)
    293 K303 K313 K323 K
    90 3.404 −4.570 5.561 6.807 30.766 116.620
    100 3.342 4.197 4.768 5.542 21.703 85.479
    110 2.937 −3.677 −4.361 −5.183 18.749 74.014
    Notes: C0—Initial concentration of solution; ∆G0—Gibbs free energy; ∆H0—Enthalpy change; ∆S0—Entropy change.
    下载: 导出CSV

    表  5  Fe3O4和Fe3O4-mPD/SP(95∶5)抗氧化性实验

    Table  5.   Antioxidant activity of Fe3O4 and Fe3O4-mPD/SP(95∶5)

    SampleSample state during adsorptionqe/(mg·g−1)
    Fe3O4Fresh preparation23.19
    Exposed to air for 48 h17.51
    Fe3O4-mPD/SP(95∶5)Fresh preparation40.46
    Exposed to air for 48 h37.73
    下载: 导出CSV
  • [1] 刘崇敏, 黄益宗, 于方明, 等. 改性沸石及添加CaCl2和MgCl2对重金属离子Pb2+吸附特性的影响[J]. 环境化学, 2013, 32(5):803-809. doi: 10.7524/j.issn.0254-6108.2013.05.012

    LIU Chongmin, HUANG Yizong, YU Fangming, et al. Effect of modified zeolite and addition of CaCl2 and MgCl2 on the adsorption characteristics of heavy metal ion Pb2+[J]. Environmental Chemistry,2013,32(5):803-809(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.05.012
    [2] 祝宏山. 高效去除水中铅离子的吸附剂制备与性能研究[D]. 合肥: 中国科学技术大学, 2019.

    ZHU Hongshan. Study on preparation and properties of adsorbents for efficient removal of lead ions from water[D]. Hefei: University of Science and Technology of China, 2019(in Chinese).
    [3] 苏欣悦, 丁欣欣, 闫良国. Fe3O4磁性纳米材料的制备及水处理应用进展[J]. 中国粉体技术, 2020, 26(6):1-10.

    SU Xinyue, DING Xinxin, YAN Liangguo. Progress in preparation and water treatment application of Fe3O4 magnetic nanomaterials[J]. China Powder Technology,2020,26(6):1-10(in Chinese).
    [4] 郭健, 姚云, 赵小旭, 等. 粮食中重金属铅离子、镉离子的污染现状及对人体的危害[J]. 粮食科技与经济, 2018, 43(3):33-35, 85.

    GUO Jian, YAO Yun, ZHAO Xiaoxu, et al. Pollution status and harm to human body of heavy metal lead ion and cadmium ion in grain[J]. Grain Science, Technology and Economy,2018,43(3):33-35, 85(in Chinese).
    [5] KILIÇ H D, KIZIL H. Simultaneous analysis of Pb2+ and Cd2+ at graphene/bismuth nanocomposite film-modified pencil graphite electrode using square wave anodic stripping voltammetry.[J]. Analytical and Bioanalytical Chemistry,2019,411(30):8113-8121. doi: 10.1007/s00216-019-02193-3
    [6] 于婉婷. 聚间苯二胺的化学氧化合成及其除Cr(VI)的研究[D]. 长沙: 中南大学, 2013.

    YU Wanting. Chemical oxidation synthesis of poly(m-phenylenediamine) and its removal of Cr(VI)[D]. Changsha: Central South University, 2013(in Chinese).
    [7] 姜智超, 邓景衡, 李伟. 四氧化三铁-蛭石复合材料制备及其对Pb2+的吸附性能[J]. 环境化学, 2017, 36(7):1664-1671. doi: 10.7524/j.issn.0254-6108.2017.07.2016110703

    JIANG Zhichao, DENG Jingheng, LI Wei. Preparation of ferric oxide-vermiculite composite and its adsorption properties for Pb2+[J]. Environmental Chemistry,2017,36(7):1664-1671(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.07.2016110703
    [8] XU P, ZENG G M, HUANG D L, et al. Adsorption of Pb(II) by iron oxide nanoparticales immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis[J]. Chemical Engineering Journal,2012,203:423-431. doi: 10.1016/j.cej.2012.07.048
    [9] IDRIS A, HASSAN N, MISRAN E, et al. Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution[J]. Journal of industrial and Engineering Chemistry,2012,18(5):1582-1589. doi: 10.1016/j.jiec.2012.02.018
    [10] 金旭. 氨基改性超顺磁纳米微粒的制备及其对污水中重金属的吸附研究[D]. 昆明: 昆明理工大学, 2018.

    JIN Xu. Preparation of amino modified superparamagnetic nanoparticles and their adsorption of heavy metals in wastewater[D]. Kunming: Kunming University of Science and Technology, 2018(in Chinese).
    [11] 刘煌. 功能性磁性纳米颗粒制备及在重金属和致病菌分离的初步应用[D]. 杭州: 浙江工商大学, 2012.

    LIU Huang. Preparation of functional magnetic nanoparticles and its preliminary application in the separation of heavy metals and pathogenic bacteria[D]. Hangzhou: Zhejiang Industrial and Commercial University, 2012(in Chinese).
    [12] 张恒, 郑娇, 许宁侠, 等. 磁性四氧化三铁纳米微粒的研究进展[J]. 河南科技, 2020, 39(35):134-136. doi: 10.3969/j.issn.1003-5168.2020.35.045

    ZHANG Heng, ZHENG Jiao, XU Ningxia, et al. Research progress of magnetic ferric oxide nanoparticles[J]. Henan Science and Technology,2020,39(35):134-136(in Chinese). doi: 10.3969/j.issn.1003-5168.2020.35.045
    [13] 谭丽莎. 功能化磁性纳米复合材料的制备及其对Pb(II)和Cr(VI)的选择性去除研究[D]. 杭州: 浙江大学, 2015.

    TAN Lisha. Preparation of functionalized magnetic nanocomposites and their selective removal of Pb(II) and Cr(VI)[D]. Hangzhou: Zhejiang University, 2015(in Chinese).
    [14] MAHER A, SAMI Y, JEAN P, et al. Superparamagnetic Fe3O4 nanoparticles, synthesis and surface modification[J]. Materials Science in Semiconductor Processing,2015,39:641-648. doi: 10.1016/j.mssp.2015.05.035
    [15] FAN L L, LUO C N, SUN M, et al. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites[J]. Colloids and Surfaces B: Biointerfaces,2013,103:523-529. doi: 10.1016/j.colsurfb.2012.11.006
    [16] SABARIAH K, ZAINATUL A A R, MASITA M, et al. Acrylic acid-grafted polyaniline fibers for nickel ion removal from water: Synthesis, characterization and adsorption kinetics[J]. Polymer Bulletin,2022,79:1699-1711. doi: 10.1007/s00289-021-03585-1
    [17] 赵德明, 李敏, 徐新华. 高分散型纳米级Pd/Fe对4-氯苯酚的还原脱氯[J]. 化工学报, 2013, 64(3):1091-1098. doi: 10.3969/j.issn.0438-1157.2013.03.043

    ZHAO Deming, LI Min, XU Xinhua. Reductive dechlorination of 4-chlorophenol by highly dispersed nanometer Pd/Fe[J]. Journal of Chemical Engineering,2013,64(3):1091-1098(in Chinese). doi: 10.3969/j.issn.0438-1157.2013.03.043
    [18] FIGUEIRA P, LOPES C B, DANIEL A L, et al. Removal of mercury(II) by dithiocarbamate surface functionalized magnetite particles: Application to synthetic and natural spiked waters[J]. Water Research,2011,45(17):5773-5784. doi: 10.1016/j.watres.2011.08.057
    [19] ZHANG W B, DENG M, SUN C X, et al. Ultrasound-enhanced adsorption of chromium(VI) on Fe3O4 magnetic particles[J]. Industrial and Engineering Chemistry Research,2014,53(1):333-339. doi: 10.1021/ie401497k
    [20] ZHANG J, ZHAI S, LI S, et al. Pb(II) removal of Fe3O4@SiO2-NH2 core-shell nanomaterials prepared via a controllable sol-gel proce[J]. Chemical Engineering Journal,2013,215-216:461-471. doi: 10.1016/j.cej.2012.11.043
    [21] YU W T, CHAI L Y, ZHANG L Y, et al. Synthesis of poly(m-phenylenediamine) with improved properties and superior prospect for Cr(VI) removal[J]. Transactions of Nonferrous Metals Society of China,2013,23(11):3490-3498. doi: 0.1016/S1003-6326(13)62893-9
    [22] HUANG M R, LU H J, LI X G. Synthesis and strong heavy-metal ion sorption of copolymer microparticles from phenylenediamine and its sulfonate[J]. Journal of Materials Chemitry,2012,22(34):17685-17699. doi: 10.1039/c2jm32361c
    [23] CRUZLOPES L P, MACENA M, ESTEVES B, et al. Ideal pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+ in aqueous solution with different adsorbent materials[J]. Open Agriculture,2021,6(1):115-123. doi: 10.1515/opag-2021-0225
    [24] LI Y C, JIN Z H, LI T L, et al. One-step synthesis and characterization of core-shell Fe@SiO2 nanocomposite for Cr(VI) reduction[J]. Science of the Total Environment,2012,421-422:260-266. doi: 10.1016/j.scitotenv.2012.01.010
    [25] LIU C K, BAI R B, LY Q S. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms[J]. Water Research,2008,42(6-7):1511-1522. doi: 10.1016/j.watres.2007.10.031
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  535
  • HTML全文浏览量:  278
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 修回日期:  2022-01-04
  • 录用日期:  2022-01-07
  • 网络出版日期:  2022-01-18
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回