留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯纤维增强赤泥-碱矿渣复合材料的力学性能

阚黎黎 朱嘉伦 王飞 李卓燃

阚黎黎, 朱嘉伦, 王飞, 等. 聚乙烯纤维增强赤泥-碱矿渣复合材料的力学性能[J]. 复合材料学报, 2022, 39(11): 5367-5374. doi: 10.13801/j.cnki.fhclxb.20220104.003
引用本文: 阚黎黎, 朱嘉伦, 王飞, 等. 聚乙烯纤维增强赤泥-碱矿渣复合材料的力学性能[J]. 复合材料学报, 2022, 39(11): 5367-5374. doi: 10.13801/j.cnki.fhclxb.20220104.003
KAN Lili, ZHU Jialun, WANG Fei, et al. Mechanical properties of polyethylene fiber reinforced red mud-alkali slag composite[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5367-5374. doi: 10.13801/j.cnki.fhclxb.20220104.003
Citation: KAN Lili, ZHU Jialun, WANG Fei, et al. Mechanical properties of polyethylene fiber reinforced red mud-alkali slag composite[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5367-5374. doi: 10.13801/j.cnki.fhclxb.20220104.003

聚乙烯纤维增强赤泥-碱矿渣复合材料的力学性能

doi: 10.13801/j.cnki.fhclxb.20220104.003
基金项目: 国家自然科学基金(51508329)
详细信息
    通讯作者:

    阚黎黎,博士,副教授,研究方向为高性能纤维增强复合材料 E-mail: kanlili1@163.com

  • 中图分类号: TQ172

Mechanical properties of polyethylene fiber reinforced red mud-alkali slag composite

  • 摘要: 为开发赤泥(RM)的资源化利用,采用RM混合矿渣与硅灰并掺加聚乙烯纤维制备中高强、高延性碱激发复合材料,研究其单轴拉伸及抗压性能,结合三点抗弯与单裂缝拉伸等细观试验探究材料的高延性机制,并通过XRD及FTIR分析水化产物。结果表明:聚乙烯纤维增强赤泥-碱矿渣复合材料的抗拉强度可以达到2.4 MPa,同时拥有3.5%的高拉伸应变性能;抗压强度可以达到近50 MPa的较高水平;细观试验得出的较大应变硬化性能指数PSH对应较高拉伸应变;除水化硅酸钙(C-S-H)或水化硅铝酸钙(C-A-S-H)凝胶外,水化产物中还包含碱性硅铝酸盐(N-A-S-H)凝胶。

     

  • 图  1  RM、GGBS和SF的粒径分布

    Figure  1.  Diameter distributions of RM, GGBS and SF

    图  2  狗骨试件尺寸

    Figure  2.  Dimensions of the dog-bone specimen

    图  3  三点抗弯试件尺寸

    Figure  3.  Dimensions of the three-point bending specimen

    图  4  单裂缝拉伸试件尺寸

    Figure  4.  Dimensions of single crack tensile specimen

    图  5  AAFRC的拉伸应力-应变曲线

    Figure  5.  Tensile stress-strain curves of AAFRC

    图  6  AAFRC的单裂缝拉伸应力-开口位移曲线

    Figure  6.  Stress-crack opening displacement curves of AAFRCfrom single crack tensile tests

    图  7  RM和GGBS (a) 及AAFRC (b) 的XRD图谱

    Figure  7.  XRD patterns of RM, GGBS (a) and AAFRC (b)

    图  8  AAFRC的FTIR图谱

    Figure  8.  FTIR spectra of AAFRC

    表  1  赤泥(RM)、矿渣(GGBS)及硅灰(SF)的化学组成

    Table  1.   Chemical compositions of red mud (RM), ground granulated blast furnace slag (GGBS) and silica fume (SF) wt%

    MaterialCaOSiO2Al2O3Fe2O3MgOSO3TiO2Na2OK2OP2O5
    RM0.4610.1817.4353.790.120.767.740.070.20
    GGBS44.3933.2013.200.386.310.820.330.28
    SF0.4992.260.891.970.960.421.31
    下载: 导出CSV

    表  2  高延性碱激发纤维增强复合材料(AAFRC)配合比

    Table  2.   Mixture proportion of alkali-activated fiber reinforced composites (AAFRC)

    MixtureRM/wt%SF/wt%GGBS/wt%Sand/wt%NaOH/wt%Na2SiO3/wt%Water/wt%Polyethylene
    (PE) fiber/vol%
    PE/GGBS-SF0.0010.3344.7714.503.0013.7012.601.90
    PE/RM-GGBS-SF22.046.2026.8614.503.0013.7012.601.90
    下载: 导出CSV

    表  3  AAFRC的拉伸性能

    Table  3.   Tensile properties of AAFRC

    MixtureInitial cracking strength/MPaTensile strength/MPaTensile strain/%
    PE/GGBS-SF2.15±0.133.30±0.133.07±0.32
    PE/RM-GGBS-SF1.89±0.412.43±0.043.58±0.11
    下载: 导出CSV

    表  4  AAFRC抗压强度

    Table  4.   Compressive strength of AAFRC

    MixtureCompressive strength/MPa
    PE/GGBS-SF69.13±2.16
    PE/RM-GGBS-SF48.83±1.86
    下载: 导出CSV

    表  5  AAFRC的基体断裂韧度与基体断裂能

    Table  5.   Matrix fracture toughness and fracture energy of AAFRC

    MixtureMass m/kgPeak load FQ/kNKm/(MPa·m1/2)Jtip/(J·m−2)
    PE/GGBS-SF1.99±0.060.27±0.030.30±0.055.05±0.23
    PE/RM-GGBS-SF2.03±0.050.23±0.040.26±0.074.28±0.75
    Notes: Km—Fracture toughness of matrix; Jtip—Fracture energy of matrix.
    下载: 导出CSV

    表  6  AAFRC单裂缝拉伸试验结果与强度指数PSHS及能量指数PSHE

    Table  6.   Results from single crack tensile test and strength index PSHS and energy index PSHE of AAFRC

    MixturePeak stress σoc/MPaCrack opening δoc/mmJb′/(J·m−2)PSHSPSHE
    PE/GGBS-SF3.14±0.050.24±0.0450.23±37.331.47±0.1110.30±7.86
    PE/RM-GGBS-SF3.03±0.090.20±0.0763.58±24.831.72±0.3916.37±8.67
    Notes: Jb′—Complementary energy of fibers.
    下载: 导出CSV
  • [1] CHEN C, HABERT G, BOUZIDI Y, et al. LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete[J]. Resources, Conservation & Recycling,2010,54(12):1231-1240.
    [2] SAFARI Z, KURDAN R, Al-HADAD B, et al. Mechanical characteristics of pumice-based geopolymer paste[J]. Resource, Conservation & Recycling,2020,162:105055.
    [3] TANG Z, LI W, VIVIAN W Y T, et al. Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials[J]. Resources, Conservation & Recycling,2020,X6:100036.
    [4] 李升涛, 陈徐东, 张伟, 等. 基于长江下游超细疏浚砂的碱激发矿渣混凝土力学性能[J]. 复合材料学报, 2022, 39(1): 335-343.

    LI Shengtao, CHEN Xudong, ZHANG Wei, et al. Mechanical properties of alkali activated slag concrete with ultra fine dredged sand from Yangtze river[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 335-343(in Chinese).
    [5] 阚黎黎, 庞成凯, 王飞, 等. 聚乙烯纤维增强高延性碱矿渣复合材料的拉压性能及裂缝分布[J]. 复合材料学报, 2021, 38(12):4309-4316.

    KAN Lili, PANG Chengkai, WANG Fei, et al. Tensile and compres-sive properties and crack distribution of PE fiber reinforced high ductile alkali-activated slag composites[J]. Acta Materiae Compositae Sinica,2021,38(12):4309-4316(in Chinese).
    [6] ZHANG Z, ZHU Y, YANG T, et al. Conversion of local industrial wastes into greener cement through geopolymer technology: A case study of high-magnesium nickel slag[J]. Journal of Cleaner Production,2017,141:463-471. doi: 10.1016/j.jclepro.2016.09.147
    [7] KAN L, SHI R, ZHAO Y, et al. Feasibility study on using incineration fly ash from municipal solid waste to develop high ductile alkali-activated composites[J]. Journal of Cleaner Production,2020,254:120168. doi: 10.1016/j.jclepro.2020.120168
    [8] OHNO M, LI V C. An integrated method of engineered geopolymer composite[J]. Cement and Concrete Composite,2018,88:73-85. doi: 10.1016/j.cemconcomp.2018.02.001
    [9] LEE B Y, CHOI C G, LIM H J, et al. Strain hardening fiber reinforced alkali-activated mortar—A feasibility study[J]. Construction and Building Materials, 2012, 37: 15-20.
    [10] GENG C, CHEN C, SHI X, et al. Recovery of metals from municipal solid waste incineration fly ash and red mud via a co-reduction process[J]. Resources, Conservation & Recycling,2020,154:104600.
    [11] ZHANG R, ZHENG S, MA S, et al. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process[J]. Journal of Hazardous Materials,2021,189(3):827-835.
    [12] YUAN S, LIU X, GAO P, et al. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud[J]. Journal of Hazardous Materials,2020,394:122579. doi: 10.1016/j.jhazmat.2020.122579
    [13] RAI S, WASEWAR K, LATAVE D, et al. Feasibility of red mud neutralization with seawater using Taguchi’s methodology[J]. International Journal of Environmental Science & Technology,2013,10(2):305-314.
    [14] PANDA S, COSTA B R, SHAH S, et al. Biotechnological trends and market impact on the recovery of rare earth elements from bauxite residue (red mud)-A review[J]. Resources, Conservation & Recycling,2021,171:105645.
    [15] PPTIKES Y, ANFELOPOULOS G N. Bauxite residue in cement and cementitious applications: Current status and a possible way forward[J]. Resource, Conservation & Recycling,2013,73:53-63.
    [16] NIE Q, HU W, AI T, et al. Strength properties of geopolymers derived from original and desulfurized red mud cured at ambient temperature[J]. Construction and Building Materials,2016,125(5):905-911.
    [17] HE J, JIE Y, ZHANG J, et al. Synthesis and characterization of red mud and rice husk ash-based geopolymer compo-sites[J]. Cement and Concrete Composites, 2013, 37: 108-118.
    [18] YE N, YANG J, LIANG S, et al. Synthesis and strength optimization of one-part geopolymer based on red mud[J]. Construction and Building Materials,2016,111:317-325. doi: 10.1016/j.conbuildmat.2016.02.099
    [19] HU W, NIE Q, HUANG B, et al. Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes[J]. Journal of Cleaner Production,2018,186:799-806. doi: 10.1016/j.jclepro.2018.03.086
    [20] Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC)[S]. Tokyo: Japan Society of Civil Engineers, 2008.
    [21] American Society for Testing and Materials. American standard test method for compressive strength of hydrau-lic cement mortars: ASTM C109/C109M-13[S]. West Conshohocken: American Society for Testing and Materials International, 2013.
    [22] American Society for Testing and Materials. American standard test method for linear-elastic plane strain fracture toughness KIC of metallic materials: ASTM E399[S]. West Conshohocken: American Society for Testing and Materials International, 2012.
    [23] ZHAO Y, SHI T, CAO L, et al. Influence of steel slag on the properties of alkali-activated fly ash and blast-furnace slag based fiber reinforced composites[J]. Cement and Concrete Composites,2020,116:103875.
    [24] BALCZAR I, KORIM T, DOBRADI A. Correlation of strength to apparent porosity of geopolymers-Understanding through variations of setting time[J]. Construction and Building Materials,2015,93(15):983-988.
    [25] YU J, LIN J, ZHANG Z, et al. Mechanical performance of ECC with high-volume fly ash after sub-elevated tempera-tures[J]. Construction and Building Materials,2015,99:82-89. doi: 10.1016/j.conbuildmat.2015.09.002
    [26] KIM J K, KIM J S, HA G J, et al. Tensile and fiber dispersion performance of ECC (engineered cementitious compo-sites) produced with ground granulated blast furnace slag[J]. Cement and Concrete Research,2007,37(7):1096-1105. doi: 10.1016/j.cemconres.2007.04.006
    [27] KANDA T, LI V C. Multiple cracking sequence and saturation in fiber reinforced cementitious composites[J]. Concrete Research and Technology,1998,9(2):19-33. doi: 10.3151/crt1990.9.2_19
    [28] KANDA T, LI V C. Practical design criteria for saturated pseudo strain hardening behavior in ECC[J]. Journal of Advanced Concrete Technology,2006,4(1):59-72. doi: 10.3151/jact.4.59
    [29] ZHANG Z, ZHU Y, ZHU H, et al. Effect of drying proce-dures on pore structure and phase evolution of alkali-activated cements[J]. Cement and Concrete Composites,2018,96:194-203.
    [30] LEE W, DEVEBTER J V. Structural reorganisation of class F fly ash in alkaline silicate solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,211(1):49-66.
    [31] ISMAIL I, BERNAL S, PROVIS J L, et al. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cement and Concrete Compo-sites,2014,45:125-135. doi: 10.1016/j.cemconcomp.2013.09.006
    [32] YU P, KIRKPATRICK R J, POE B, et al. Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy[J]. Journal of the American Ceramic Society, 1999, 82(3): 742–748.
    [33] ZHANG J, LI S, LI Z. Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural networks[J]. Journal of Cleaner Production,2020,273:122972. doi: 10.1016/j.jclepro.2020.122972
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  431
  • HTML全文浏览量:  181
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 修回日期:  2021-12-09
  • 录用日期:  2021-12-24
  • 网络出版日期:  2022-01-05
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回