留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声辅助制备的LaFeO3/PS催化可见光芬顿降解盐酸四环素

戈晓东 孟冠华 刘宝河 张林森 杨建华 程洛闻

戈晓东, 孟冠华, 刘宝河, 等. 超声辅助制备的LaFeO3/PS催化可见光芬顿降解盐酸四环素[J]. 复合材料学报, 2023, 40(1): 255-269. doi: 10.13801/j.cnki.fhclxb.20220101.001
引用本文: 戈晓东, 孟冠华, 刘宝河, 等. 超声辅助制备的LaFeO3/PS催化可见光芬顿降解盐酸四环素[J]. 复合材料学报, 2023, 40(1): 255-269. doi: 10.13801/j.cnki.fhclxb.20220101.001
GE Xiaodong, MENG Guanhua, LIU Baohe, et al. Study of the degradation of tetracycline by visible photo-Fenton catalyzed by ultrasound-assisted LaFeO3/PS[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 255-269. doi: 10.13801/j.cnki.fhclxb.20220101.001
Citation: GE Xiaodong, MENG Guanhua, LIU Baohe, et al. Study of the degradation of tetracycline by visible photo-Fenton catalyzed by ultrasound-assisted LaFeO3/PS[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 255-269. doi: 10.13801/j.cnki.fhclxb.20220101.001

超声辅助制备的LaFeO3/PS催化可见光芬顿降解盐酸四环素

doi: 10.13801/j.cnki.fhclxb.20220101.001
基金项目: 安徽高校自然科学研究重点项目(KJ2017A065);2017年度高校优秀骨干青年人才国内外访学研修项目(gxfx2017019)
详细信息
    通讯作者:

    孟冠华,博士,教授,硕士生导师,研究方向为污水处理及资源化 E-mail:mengguanhua@163.com

  • 中图分类号: TB333

Study of the degradation of tetracycline by visible photo-Fenton catalyzed by ultrasound-assisted LaFeO3/PS

Funds: Key Project Funded by the National Science Foundation of the Anhui Higher Education Institutions of China (KJ2017A065); Program of Study Abroad for Young Scholar Sponsored by Anhui Province, China (gxfx2017019)
  • 摘要: 粉末状LaFeO3材料具有易团聚、分离困难等缺点,规模化应用中受到限制。聚苯乙烯树脂(PS)上沉积粉末状催化剂,弥补了以上粉末材料的不足。为此,本文采用超声辅助溶胶-凝胶和水热法,在PS上沉积了自组装形成的LaFeO3凝胶微球,制得了LaFeO3/PS催化剂,并对其结构和性能进行了系统的研究。LaFeO3凝胶微球在PS上的分散分布使LaFeO3的禁带宽度变宽,从而增加了氧化还原能力,并解决了催化剂团聚等问题,提高了LaFeO3的光芬顿催化活性。在La∶Fe∶柠檬酸(CA)摩尔比=1∶1∶2、超声40 min、水热时间18 h、水热温度90℃、LaFeO3起始剂/PS质量比=32∶1的制备条件制得的复合材料,在可见光下催化芬顿降解盐酸四环素(TC),TC的去除率可达96.51%(降解速率k=0.0160 min−1)。自由基捕获实验表明,•O2是主要活性物种。结合捕获实验提出了TC的降解机制。通过LC/MS分析,得到了TC的降解路径。该技术提高了催化剂的稳定性,高效利用了太阳能,是一种很有前途的有机污染物降解技术。

     

  • 图  1  (a) LaFeO3/聚苯乙烯树脂(PS)样品制备流程图;(b) XPA-7(G4)光催化反应仪

    Figure  1.  (a) Sample preparation flow chart of LaFeO3/polystyrene resin (PS); (b) XPA-7 (G4) photocatalytic reaction instrument

    图  2  La∶ Fe∶ CA的摩尔比对LaFeO3/PS催化性能的影响(超声波功率100 W,频率40 kHz,超声辅助时间40 min,水热温度90℃,水热时间18 h,LaFeO3起始剂/PS质量比=32∶1)

    Figure  2.  Influence of the molar ratio of La∶ Fe∶ CA on the catalytic performance of LaFeO3/PS (P=100 W, f=40 kHz, tu=40 min, T=90°C, th=18 h, LaFeO3 initiator/PS mass ratio=32∶1. P—Power; f—Frequency; tu—Time of ultrasonic; T—Temperature of the hydrothermal; th—Time of the hydrothermal)

    CA—Citric acid; C0—Initial concentration of tetracycline hydrochloride (TC); Ct—Concentration of TC at time t; k—Degradation rate; R—Correlation index

    图  3  (a) 超声时间对LaFeO3/PS催化性能的影响(La∶Fe∶CA的摩尔比=1∶1∶2,超声功率100 W,频率40 kHz,水热温度90℃,水热时间18 h,LaFeO3起始剂/聚苯乙烯质量比=32∶1);(b) 水热温度对LaFeO3/PS催化性能的影响(La∶Fe∶CA的摩尔比=1∶1∶2,超声功率为100 W,频率40 kHz,超声辅助时间为40 min,水热时间18 h,LaFeO3起始剂/PS质量比=32∶1)

    Figure  3.  (a) Effect of ultrasound time on the catalytic performance of LaFeO3/PS (Molar ratio of La∶Fe∶CA=1∶1∶2, P=100 W, f=40 kHz, T=90°C, th=18 h, LaFeO3 initiator/polystyrene mass ratio=32∶1); (b) Influence of hydrothermal temperature on the catalytic performance of LaFeO3/PS (Molar ratio of La∶Fe∶CA = 1∶1∶2, P= 100 W, f=40 kHz, tu=40 min, T=90°C ,th=18 h, LaFeO3 initiator/PS mass ratio=32∶1)

    图  4  水热时间对LaFeO3/PS催化性能的影响(La∶Fe∶CA的摩尔比=1∶1∶2,超声功率100 W,频率40 kHz,超声辅助时间为40 min,水热温度为90℃,LaFeO3起始剂/PS质量比=32∶1)

    Figure  4.  Influence of hydrothermal time on the catalytic performance of LaFeO3/PS (Molar ratio of La∶Fe∶CA=1∶1∶2, P=100 W, f=40 kHz, tu=40 min, T=90℃, LaFeO3 initiator/PS mass ratio=32∶1)

    图  5  LaFeO3起始剂/PS的质量比对LaFeO3/PS催化性能的影响(La∶Fe∶CA的摩尔比=1∶1∶2,超声功率为100 W,频率40 kHz,超声辅助时间40 min,水热温度90℃,水热时间18 h)

    Figure  5.  Effect of LaFeO3 initiator/PS mass ratio on the catalytic performance of LaFeO3/PS (Molar ratio of La∶Fe∶CA=1∶1∶2 , P= 100 W, f=40 kHz, tu= 40 min, T=90℃, th=18 h)

    图  6  不同体系下LaFeO3/PS催化光芬顿降解TC去除效率的对比

    Figure  6.  Comparison of LaFeO3/PS catalyzed photo-Fenton degradation TC removal efficiency in different systems

    图  7  (a) LaFeO3/PS光芬顿反应体系中TC去除率及其矿化度;(b)催化剂可重复利用性测试

    Figure  7.  (a) TC and TOC removal rate of LaFeO3/PS photo-Fenton degradation system; (b) Catalyst reusability test

    TOC—Total organic carbon

    图  8  LaFeO3/PS和PS样品的SEM图像、负载前后实际图像及SEM元素映射图像:((a)、(b)) PS的SEM图像;((c)、(d)) LaFeO3/PS的SEM图像;(e) PS and LaFeO3/PS的照片;(f) LaFeO3/PS的映射点;((g)、(h)) LaFeO3/PS的元素映射

    Figure  8.  SEM images of the LaFeO3/PS and PS sample, the actual pictures before and after loading, and SEM element mapping images: ((a), (b)) SEM images of PS; ((c), (d)) SEM images of LaFeO3/PS; (e) Pictures of PS and LaFeO3/PS; (f) Mapping spot of LaFeO3/PS; ((g), (h)) Elemental mapping of LaFeO3/PS

    图  9  (a) PS和 LaFeO3/PS的EDS图谱;(b) LaFeO3、LaFeO3/PS和PS的FTIR图谱;

    Figure  9.  (a) EDS spectra of PS and LaFeO3/PS; (b) FTIR spectra of LaFeO3, LaFeO3/PS and PS

    图  10  (a) LaFeO3、LaFeO3/PS和PS的XRD图谱;(b) PS、LaFeO3和LaFeO3/PS的紫外-可见漫反射光谱

    Figure  10.  (a) XRD patterns of LaFeO3, LaFeO3/PS and PS; (b) UV-V is DRS spectra of PS, LaFeO3 and LaFeO3/PS

    α—Absorption coefficient; E—Photoenergy

    图  11  LaFeO3和LaFeO3/PS的XPS图谱

    Figure  11.  XPS spectra of LaFeO3 and LaFeO3/PS

    VB—Valence band

    图  12  (a) 不同捕获剂对光芬顿降解TC的影响;(b) LaFeO3/PS催化光芬顿降解TC的机制图

    Figure  12.  (a) Effects of different trapping agents on degradation of TC by photo-Fenton; (b) Mechanism diagram of the degradation of TC by LaFeO3/PS catalyzed by photo-Fenton

    TBA—Tertiary butyl alcohol; PBQ—p-Benzoquinone; DMSO—Dimethyl sulfoxide; CB—Conduction band; h—Planck's constant; ν—Frequency

    图  13  TC可能的降解路径

    Figure  13.  Possible degradation pathways of TC

    表  1  LaFeO3、LaFeO3/PS和PS材料的物理性质和零电荷点

    Table  1.   Physical properties and zero charge point of LaFeO3, LaFeO3/PS and PS materials

    SampleSpecific surface area/(m2·g−1)Micropore
    area/(m2·g−1)
    Pore volume/
    (cm3·g−1)
    Average pore
    diameter/nm
    Point of zero charge (pHpzc)
    PS837.414.711.150005.746.74
    LaFeO3/PS756.8953.671.020005.623.08
    LaFeO30.030.130.000070.703.00
    下载: 导出CSV

    表  2  LaFeO3/PS催化光芬顿降解TC去除率同近年来报道的方法的比较

    Table  2.   Removal efficiency of TC by LaFeO3/PS catalyzed by photo-Fenton compared with approaches reported in recent years

    MaterialMethodRemoval efficiencyParameterReference
    Biochar/GeopolymerFenton92.55%pH=5.0, 11 h, 50 mg/L[41]
    LaFeO3/PersulfatePhoto-Fenton92.60%pH=4.4, 1 h, 40 mg/L[42]
    s-MnFe2O4Fenton87.60% (TOCRT=47.50%)pH=3.0, 3 h, 30 mg/L[43]
    Fe3O4@CUV-Fenton79.25% (TOCRT=43.50%)pH=4.0-5.0, 2 h, 43.7 mg/L[44]
    CuFeO2/BiocharPhoto-Fenton97.40% (TOCRT=39.00%)pH=4.0-5.0, 2 h, 20 mg/L[45]
    LaFeO3/DiaionTM HP21Photo-Fenton90.80% (TOCRT=73.00%),
    73.00% (3rd cycle)
    pH=4.0-5.0, 3 h, 10 mg/L[18]
    LaFeO3/PSPhoto-Fenton98.01% (TOCRT=73.25%),
    90.93% (7rd cycle)
    pH=4.75, 5 h, 16.73 mg/LThis study
    Note: TOCRT—TOC removal rate.
    下载: 导出CSV
  • [1] MACHULEK A J, MORAES J E F, VAUTIER-GIONGO C, et al. Abatement of the inhibitory effect of chloride anions on the photo-Fenton process[J]. Environmental Science & Eechnology,2007,41(24):8459-8463. doi: 10.1021/es071884q
    [2] HU J Y, TIAN K, JIANG H. Improvement of phenol photodegradation efficiency by a combined g-C3N4/Fe(III)/persulfate system[J]. Chemosphere,2016,148:34-40. doi: 10.1016/j.chemosphere.2016.01.002
    [3] HABIBI-YANGJEH A, MOUSAVI M, NAKATA K. Boosting visible-light photocatalytic performance of g-C3N4/Fe3O4 anchored with CoMoO4 nanoparticles: Novel magnetically recoverable photocatalysts[J]. Journal of Photochemistry and Photobiology A: Chemistry,2019,368:120-136. doi: 10.1016/j.jphotochem.2018.09.026
    [4] 刘庆生, 游拯, 国辉, 等. LaFeO3复合氧化物的制备与红外辐射性能[J]. 中国有色金属学报, 2017, 27(4):781-788.

    LIU Qingsheng, YOU Zheng, GUO Hui, et al. Preparation and infrared radiation performance of LaFeO3 composite oxide[J]. Transactions of Nonferrous Metals Society of China,2017,27(4):781-788(in Chinese).
    [5] SHEN H F, LI Q M, WANG Y M, et al. Preparation of lanthanum ferrite via ultrasound-assisted sol-gel method and its photocatalytic activity[J]. Bulletin of the Chinese Ceramic Society,2018,46(3):402-412. doi: 10.14062/j.issn.0454-5648.2018.03.14
    [6] JAUHAR S, DHIMAN M, BANSAL S, et al. Mn3+ ion in perovskite lattice: A potential Fenton's reagent exhibiting remarkably enhanced degradation of cationic and anionic dyes[J]. Journal of Sol-Gel Science and Technology,2015,75:124-133. doi: 10.1007/s10971-015-3682-8
    [7] DAS S, MAHALINGAM H. Dye degradation studies using immobilized pristine and waste polystyrene-TiO2/rGO/g-C3N4 nanocomposite photocatalytic film in a novel airlift reactor under solar light[J]. Journal of Environmental Chemical Engineering,2019,7(5):103289. doi: 10.1016/j.jece.2019.103289
    [8] MUHAMMAD H, NING S, FAZAL R, et al. Synthesis of ZnO/Bi-doped porous LaFeO3 nanocomposites as highly efficient nano-photocatalysts dependent on the enhanced utilization of visible-light-excited electrons[J]. Applied Catalysis B: Environmental,2018,231:23-33. doi: 10.1016/j.apcatb.2018.02.060
    [9] WANG K, NIU H, CHEN J, et al. Immobilizing LaFeO3 nanoparticles on carbon spheres for enhanced heterogeneous photo-Fenton like performance[J]. Applied Surface Science,2017,404:138-145. doi: 10.1016/j.apsusc.2017.01.223
    [10] REN X, YANG H, GEN S, et al. Controlled growth of LaFeO3 nanoparticles on reduced graphene oxide for highly efficient photocatalysis[J]. Nanoscale,2016,8(2):752-756. doi: 10.1039/C5NR06338H
    [11] MIHAI O, CHEN D, HOLMEN A, et al. Preparation of stable cubic LaFeO3 nanoparticles using carbon nanotubes as templates[J]. Journal of Materials Chemistry A,2013,1(24):7006-7011. doi: 10.1039/c3ta10828g
    [12] PHAN T T N, NIKOLOSKI A N, BAHRI P A, et al. Adsorption and photo-Fenton catalytic degradation of organic dyes over crystalline LaFeO3-doped porous silica[J]. RSC Advances,2018,8(63):36181-36190. doi: 10.1039/c8ra07073c
    [13] PHAN T T N, NIKOLOSKI A N, BAHRI P A, et al. Enhanced removal of organic using LaFeO3-integrated modified natural zeolites via heterogeneous visible light photo-Fenton degradation[J]. Journal of Environmental Management,2019,233:471-480. doi: 10.1016/j.jenvman.2018.12.051
    [14] PENG K, FU L, YANG H, et al. Perovskite LaFeO3/montmorillonite nanocomposites: Synthesis, interface characteristics and enhanced photocatalytic activity[J]. Scientific Reports,2016,6:19723.
    [15] SADAKANE M, HORIUCHI T, KATO N, et al. Preparation of three-dimensionally ordered macroporous perovskite-type lanthanum-iron-oxide LaFeO3 with tunable pore diameters: High porosity and photonic property[J]. Journal of Solid State Chemistry,2010,183(6):1365-1371. doi: 10.1016/j.jssc.2010.04.012
    [16] VAIANO V, MATARANGOLO M, SACCO O. UV-LEDs floating-bed photoreactor for the removal of caffeine and paracetamol using ZnO supported on polystyrene pellets[J]. Chemical Engineering Journal,2018,350:703-713. doi: 10.1016/j.cej.2018.06.011
    [17] ZHANG J, LI L, XIAO Z, et al. Hollow sphere TiO2-ZrO2 prepared by self-assembly with polystyrene colloidal template for both photocatalytic degradation and H2 evolution from water splitting[J]. ACS Sustainable Chemistry & Engineering,2016,4(4):2037-2046. doi: 10.1021/acssuschemeng.5b01359
    [18] ALPAY A, TUNA Ö, SIMSEK E B. Deposition of perovskite-type LaFeO3 particles on spherical commercial polystyrene resin: A new platform for enhanced photo-Fenton-catalyzed degradation and simultaneous wastewater purification[J]. Environmental Technology & Innovation,2020,20:101175. doi: 10.1016/j.eti.2020.101175
    [19] XU H, ZEIGER B W, SUSLICK K S. Sonochemical synthesis of nanomaterials[J]. Chemical Society Reviews,2013,42(7):2555-2567. doi: 10.1039/C2CS35282F
    [20] 沈宏芳, 李清明, 王燕民, 等. 超声波辅助溶胶-凝胶法合成纳米铁酸镧及其光催化性能[J]. 硅酸盐学报, 2018, 46(3): 402-412.

    SHEN Hongfang, LI Qingming, WANG Yanmin, et al. Ultrasonic-assisted sol-gel synthesis of nano-lanthanum ferrite and its photocatalytic properties[J]. Journal of the Chinese Ceramic Society, 2018, 46(3): 402-412(in Chinese).
    [21] PHAN T T N, NIKOLOSKI A N, BAHRI P A, et al. Heterogeneous photo-Fenton degradation of organics using highly efficient Cu-doped LaFeO3 under visible light[J]. Journal of Industrial and Engineering Chemistry,2018,61:53-64. doi: 10.1016/j.jiec.2017.11.046
    [22] THIRUMALAIRAJAN S, GIRIJA K, GANESH I, et al. Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-assembly process and their associated photocatalytic activity[J]. Chemical Engineering Journal,2012,209:420-428. doi: 10.1016/j.cej.2012.08.012
    [23] DANG F, KATO K, IMAI H, et al. Growth of BaTiO3 nanoparticles in ethanol-water mixture solvent under an ultrasound-assisted synthesis[J]. Chemical Engineering Journal,2011,170(1):333-337. doi: 10.1016/j.cej.2011.03.076
    [24] FU Z, POPOV V. Parametric study of acoustically-driven microbubble cavitations in a sonochemical reactor[J]. Ultrasonics Sonochemistry,2014,21(1):415-427. doi: 10.1016/j.ultsonch.2013.07.001
    [25] KATO H, KUDO A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium[J]. Journal of Physical Chemistry B,2002,106(19):5029-5034. doi: 10.1021/jp0255482
    [26] WU Y, LI X, ZHAO H, et al. 2D/2D FeNi-layered double hydroxide/bimetal-MOFs nanosheets for enhanced photo-Fenton degradation of antibiotics: Performance and synergetic degradation mechanism[J]. Chemosphere,2022,287:132061. doi: 10.1016/j.chemosphere.2021.132061
    [27] TIWARI S, SHARMA N, SAXENA R. On-line speciation of chromium using a modified chelating resin and determination in industrial water samples by flame atomic absorption spectrometry[J]. New Journal of Chemistry,2015,40(2):1412-1419. doi: 10.1039/C5NJ02283E
    [28] 刘艳, 高洋, 赵昕, 等. 凝胶型树脂载纳米水合氧化铁复合材料的制备与除As(V)特性[J]. 高分子学报, 2018(7):939-948.

    LIU Yan, GAO Yang, ZHAO Xin, et al. Preparation of gel-type resin-loaded nano-hydrated iron oxide composite material and its As(V) removal characteristics[J]. Acta Polymerica Sinica,2018(7):939-948(in Chinese).
    [29] ESRA B S, ÖZLEM T, ZEYNEP B. Construction of stable perovskite-type LaFeO3 particles on polymeric resin with boosted photocatalytic Fenton-like decaffeination under solar irradiation[J]. Separation and Purification Technology,2020,237:116384. doi: 10.1016/j.seppur.2019.116384
    [30] SUN B, ZHOU W, LI H, et al. Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production[J]. Advanced Materials,2018,30(43):1804282. doi: 10.1002/adma.201804282
    [31] XU Y, LI H, SUN B, et al. Surface oxygen vacancy defect-promoted electron-hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance[J]. Chemical Engineering Journal,2020,379:122295.
    [32] 吴丹, 詹海鹃, 刘宇凤, 等. LaNixFe(1-x)O3钙钛矿光催化降解碱性品红[J]. 硅酸盐通报, 2019, 38(6):1832-1838.

    WU Dan, ZHAN Haijuan, LIU Yufeng, et al. LaNixFe(1-x)O3 perovskite photocatalytic degradation of basic fuchsin[J]. Silicate Bulletin,2019,38(6):1832-1838(in Chinese).
    [33] 郝强, 郝思濛, 牛秀秀, 等. 通过rGO与g-C3N4的π–π堆积作用提高氮化碳光化学氧化能力[J]. 催化学报, 2017, 38(2):278-286.

    HAO Qiang, HAO Simeng, NIU Xiuxiu, et al. Improving the photochemical oxidation ability of carbon nitride through the π-π stacking interaction of rGO and g-C3N4[J]. Chinese Journal of Catalysis,2017,38(2):278-286(in Chinese).
    [34] AUGUGLIARO V, LITTER M, PALMISANO L, et al. The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2006,7(4):127-144. doi: 10.1016/j.jphotochemrev.2006.12.001
    [35] POURETEDAL H R, TOFANGSAZI Z, KESHAVARZ M H. Photocatalytic activity of mixture of ZrO2/SnO2, ZrO2/CeO2 and SnO2/CeO2 nanoparticles Generic[J]. Journal of Alloys and Compounds,2011,513:359-564.
    [36] 段丽媛, 李国强, 张舒婷, 等. 二次等温热缩聚改性对g-C3N4光催化剂性能的影响[J]. 化工进展, 2021, 40(6):3389-3400.

    DUAN Liyuan, LI Guoqiang, ZHANG Shuting, et al. Effect of secondary isothermal thermal polycondensation modification on the performance of g-C3N4 photocatalyst[J]. Chemical Progress,2021,40(6):3389-3400(in Chinese).
    [37] 綦毓文, 魏砾宏, 石冬妮, 等. UiO-66/BiVO4复合光催化剂的制备及其对四环素的光解[J]. 中国环境科学, 2021, 41(3):1162-1171. doi: 10.3969/j.issn.1000-6923.2021.03.019

    QI Yuwen, WEI Lihong, SHI Dongni, et al. Preparation of UiO-66/BiVO4 composite photocatalyst and its photolysis of tetracycline[J]. China Environmental Science,2021,41(3):1162-1171(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.03.019
    [38] 王丹, 赵利霞, 张辉, 等. 二氧化钛光催化产生超氧自由基的形态分布研究[J]. 分析化学, 2017, 45(12):1882-1887. doi: 10.11895/j.issn.0253-3820.171378

    WANG Dan, ZHAO Lixia, ZHANG Hui, et al. Study on the speciation distribution of superoxide radicals generated by titanium dioxide photocatalysis[J]. Analytical Chemistry,2017,45(12):1882-1887(in Chinese). doi: 10.11895/j.issn.0253-3820.171378
    [39] LIU D, WANG J, WANG Y, et al. An anion exchange strategy for construction of a novel Bi2SiO5/Bi2MoO6 heterostructure with enhanced photocatalytic performance[J]. Catalysis Science & Technology,2018,8(13):3278-3285.
    [40] WANG S, ZHAO L, HUANG W, et al. Solvothermal synthesis of CoO/BiVO4 p-n heterojunction with micro-nano spherical structure for enhanced visible light photocatalytic activity towards degradation of tetracycline[J]. Materials Research Bulletin,2021,135:111161. doi: 10.1016/j.materresbull.2020.111161
    [41] 黄嘉绮, 葛圆圆, 李志礼, 等. 生物炭/地聚物复合膜的制备及其对四环素的去除[J]. 化工进展, 2022, 41(1): 427-434.

    HUANG Jiaqi, GE Yuanyuan, LI Zhili, et al. Preparation of biochar/geopolymer composite membrane and its removal of tetracycline[J]. Chemical Progress, 2022, 41(1): 427-434(in Chinese).
    [42] FENG Q, ZHOU J, LUO W, et al. Photo-Fenton removal of tetracycline hydrochloride using LaFeO3 as a persulfate activator under visible light[J]. Ecotoxicology and Environmental Safety,2020,198:110661. doi: 10.1016/j.ecoenv.2020.110661
    [43] 秦航道, 肖榕, 吴思展, 等. MnFe2O4磁性纳米棒非均相Fenton催化降解水中四环素的研究[J]. 环境科学学报, 2020, 40(11):3913-3921.

    QIN Hangdao, XIAO Rong, WU Sizhan, et al. Study on heterogeneous Fenton catalytic degradation of tetracycline in water by MnFe2O4 magnetic nanorods[J]. Journal of Environmental Science,2020,40(11):3913-3921(in Chinese).
    [44] KAKAVANDI B, TAKDASTAN A, JAAFARZADEH N, et al. Application of Fe3O4@C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method[J]. Journal of Photochemistry and Photobiology A: Chemistry,2016,314:178-188. doi: 10.1016/j.jphotochem.2015.08.008
    [45] XIN S, MA B, LIU G, et al. Enhanced heterogeneous photo-Fenton-like degradation of tetracycline over CuFeO2/biochar catalyst through accelerating electron transfer under visible light[J]. Journal of Environmental Management,2021,285:112093. doi: 10.1016/j.jenvman.2021.112093
    [46] JIANG J, WANG X, LIU Y, et al. Photo-Fenton degradation of emerging pollutants over Fe-POM nanoparticle/porous and ultrathin g-C3N4 nanosheet with rich nitrogen defect: Degradation mechanism, pathways, and products toxicity assessment[J]. Applied Catalysis B: Environmental,2020,278:119349. doi: 10.1016/j.apcatb.2020.119349
    [47] WANG Y, RAO L, WANG P, et al. Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment[J]. Applied Catalysis B: Environmental,2020,262:118308. doi: 10.1016/j.apcatb.2019.118308
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1142
  • HTML全文浏览量:  676
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2021-12-16
  • 录用日期:  2021-12-26
  • 网络出版日期:  2022-01-04
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回