留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

少层石墨烯对水泥净浆流动性能及力学性能的影响

何威 许吉航 焦志男

何威, 许吉航, 焦志男. 少层石墨烯对水泥净浆流动性能及力学性能的影响[J]. 复合材料学报, 2022, 39(11): 5637-5649. doi: 10.13801/j.cnki.fhclxb.20211112.001
引用本文: 何威, 许吉航, 焦志男. 少层石墨烯对水泥净浆流动性能及力学性能的影响[J]. 复合材料学报, 2022, 39(11): 5637-5649. doi: 10.13801/j.cnki.fhclxb.20211112.001
HE Wei, XU Jihang, JIAO Zhinan. Effect of few-layer graphene on the fluidity and mechanical properties of cement paste[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5637-5649. doi: 10.13801/j.cnki.fhclxb.20211112.001
Citation: HE Wei, XU Jihang, JIAO Zhinan. Effect of few-layer graphene on the fluidity and mechanical properties of cement paste[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5637-5649. doi: 10.13801/j.cnki.fhclxb.20211112.001

少层石墨烯对水泥净浆流动性能及力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20211112.001
基金项目: 国家自然科学基金(51578477)
详细信息
    通讯作者:

    何威,博士,教授,研究方向为水泥基复合材料  E-mail:hewei@ysu.edu.cn

  • 中图分类号: TB332

Effect of few-layer graphene on the fluidity and mechanical properties of cement paste

  • 摘要: 系统研究了少层石墨烯(FLG)对水泥净浆流动性能和力学性能(抗压强度和抗折强度)的影响,通过SEM、XRD、EDS剖析了FLG对净浆力学性能影响的作用机制。同时利用AFM、Raman、SEM等技术表征了FLG的层数和结构。结果表明:FLG的层数在3~6层,呈现六角型蜂窝结构,有层间堆叠现象。FLG的掺入能降低净浆的流动性,净浆3 天和28 天抗压强度分别提升了27.84%和13.52%,3 天和28天抗折强度分别提升了12.92%和19.68%。FLG具有模板效应,能够促进水泥水化产物的生长,改变水化晶体的形状、尺寸,使其有形成完整、致密的趋势,使净浆结构更加密实。

     

  • 图  1  少层石墨烯(FLG)模拟图 (a) 及外观 (b)

    Figure  1.  Simulation diagram (a) and appearance (b) of few-layer graphene (FLG)

    图  2  机械搅拌加超声分散制备FLG分散液

    Figure  2.  Preparation of FLG dispersion by mechanical agitation and ultrasonic dispersion

    图  3  FLG的微观形貌

    Figure  3.  Microstructure of FLG

    图  4  FLG的AFM相图

    Figure  4.  AFM phase diagram of FLG

    图  5  FLG高厚图

    Figure  5.  Height and thickness diagram of FLG

    图  6  FLG的Raman图谱

    Figure  6.  Raman spectrum of FLG

    图  7  FLG的XRD图谱

    Figure  7.  XRD pattern of FLG

    图  8  FLG的FTIR图谱

    Figure  8.  FTIR spectra of FLG

    图  9  FLG/PC扩展度随FLG掺量变化趋势

    Figure  9.  Variation trend of FLG/PC net slurry expansion with FLG content

    图  10  FLG/PC净浆3天和28天抗压强度随FLG掺量变化趋势

    Figure  10.  Variation trend of 3 days and 28 days compressive strength of FLG/PC net slurry with FLG content

    图  11  FLG/PC净浆3天和28天抗折强度随FLG掺量变化趋势

    Figure  11.  Variation trend of 3 days and 28 days flexural strength of FLG/PC net slurry with FLG content

    图  12  养护3天不同FLG掺量的FLG/PC净浆微观形貌

    Figure  12.  Microstructures of FLG/PC net slurry with different FLG contents after curing for 3 days

    AFt—Ettringite; C-S-H—Calcium silicate hydrate

    图  13  养护28天不同FLG掺量的FLG/PC净浆微观形貌及水化产物的元素能谱图

    Figure  13.  Microstructures and elemental energy spectra of hydration products of FLG/PC net slurry with different FLG contents after curing for 28 days

    图  14  养护3天后不同FLG掺量的FLG/PC净浆XRD图谱

    Figure  14.  XRD patterns of FLG/PC net slurry with different FLG contents after curing for 3 days

    CH—Calcium hydroxide; C2S—Dicalcium silicate

    图  15  养护28天后不同FLG掺量的FLG/PC净浆XRD图谱

    Figure  15.  XRD patterns of FLG/PC net slurry with different FLG contents after curing for 28 days

    表  1  FLG参数

    Table  1.   Parameters of FLG

    TypeSpecific area/
    (m2·g−1)
    Tap density/
    (g·cm−3)
    pHMoisture/%Mass fraction of carbon/wt%Mass fraction of oxygen/wt%Mass fraction of sulfur/wt%
    FLG458.550.0227.100.54≥98.0<1.0<0.1
    下载: 导出CSV

    表  2  P·O 42.5水泥化学分析结果

    Table  2.   Chemical analysis results of P·O 42.5 cement wt%

    SiO2Al2O3Fe2O3CaOMgOSO3Na2OK2OClf-CaOR2O
    21.477.173.1160.042.902.770.110.700.0240.570.57
    Notes: f-CaO—Free calcium oxide; R2O—Alkali oxides.
    下载: 导出CSV

    表  3  P·O 42.5水泥物理性能检测结果

    Table  3.   Physical performance test results of P·O 42.5 cement

    Density/
    (g·cm−3)
    Degree of powderSetting timeStabilityFlexural
    strength/MPa
    Compressive
    strength/MPa
    Specific
    surface area/
    (m2·kg−1)
    Screening
    allowance of
    80 μm/%
    Consistency/
    %
    Initial
    setting/
    min
    Final
    setting/
    min
    Ray type
    method/
    mm
    3 days28 days3 days28 days
    3.06 351 0.28 28.0 170 235 0.5 5.6 8.9 29.0 57.3
    下载: 导出CSV

    表  4  FLG/水泥(PC)净浆复合材料试件编号

    Table  4.   Specimen number of FLG/portland cement (PC) net slurry composite

    SpecimenFLG content/wt%
    0wt%FLG/PC 0.00
    0.02wt%FLG/PC 0.02
    0.04wt%FLG/PC 0.04
    0.06wt%FLG/PC 0.06
    0.08wt%FLG/PC 0.08
    0.1wt%FLG/PC 0.10
    0.5wt%FLG/PC 0.50
    1wt%FLG/PC 1.00
    下载: 导出CSV

    表  5  养护28天FLG/PC净浆复合材料水化产物的元素组成及质量分数

    Table  5.   Elemental composition and mass fraction of hydration products of FLG/PCnet slurry composite after curing for 28 days

    Element content/wt%0wt%FLG/PC0.04wt%FLG/PC1wt%FLG/PC
    C8.1713.046.70
    O50.7451.7743.84
    Mg0.360.690.47
    Al2.731.744.57
    Si7.897.8010.51
    S1.711.211.50
    K1.021.661.95
    Ca27.3822.0930.46
    下载: 导出CSV
  • [1] LI V C. High-performance and multifunctional cement-based composite material[J]. Engineering,2019,5(2):250-260. doi: 10.1016/j.eng.2018.11.031
    [2] PEYVANDI A, SOROUSHIAN P, FARHADI N, et al. Evaluation of the reinforcement efficiency of low-cost graphite nanomaterials in high-performance concrete[J]. KSCE Journal of Civil Engineering,2018,22(10):3875-3882. doi: 10.1007/s12205-018-0168-6
    [3] FU C, XIE C Y, LIU J, et al. A comparative study on the effects of three nano-materials on the properties of cement-based composites[J]. Materials,2020,13(4):857. doi: 10.3390/ma13040857
    [4] SUMESH M, ALENGARAM U J, JUMAAT M Z, et al. Incorporation of nano-materials in cement composite and geopolymer based paste and mortar—A review[J]. Construction and Building Materials,2017,148:62-84. doi: 10.1016/j.conbuildmat.2017.04.206
    [5] HE W, JIAO Z N, WANG Y W, et al. Research on the mechanical properties and electrical conductivity of cement mortar based on recycled nano-iron boride[J]. Waste Disposal & Sustainable Energy,2021, 3(2):1-10.
    [6] PAUL S C, ROOYEN A V, VAN ZIJL G P A G, et al. Properties of cement-based composites using nanoparticles: A comprehensive review[J]. Construction and Building Materials,2018,189:1019-1034. doi: 10.1016/j.conbuildmat.2018.09.062
    [7] PAUL S C, VAN ROOYEN A S, VAN ZIJL G P A G, et al. Properties of cement-based composites using nanoparticles: A comprehensive review[J]. Construction and Building Materials, 2018, 189: 1019-1034.
    [8] SINGH L P, ALI A, TYAGI I, et al. Durability studies of nano-engineered fly ash concrete[J]. Construction and Building Materials,2019,194(10):205-215.
    [9] ALWASH D, KALFAT R, DU H J, et al. Development of a new nano modified cement based adhesive for FRP strengthened RC members[J]. Construction and Building Materials,2021,277(1):122318.
    [10] PAWEL S, MOHAMED A E, DIETMAR S. The influence of nanomaterials on the thermal resistance of cement-based composites—A review[J]. Nanomaterials,2018,8(7):465. doi: 10.3390/nano8070465
    [11] ZHAO Z, QI T, ZHOU W, et al. A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials[J]. Nanotechnology Reviews,2020,9(1):303-322. doi: 10.1515/ntrev-2020-0023
    [12] PRASAD H, SITARAM N. Performance of nano materials for the strength development in concrete cube used as partial replacement for cement at different temperatures[J]. Materials Today: Proceedings,2021,45(6):7253-7258.
    [13] FAKHRY Z, SALMAN A J, ALQADHI R. Microstructural analysis for cement mortar with different nano materials[J]. Materials Science Forum,2020,1002:615-626. doi: 10.4028/www.scientific.net/MSF.1002.615
    [14] GEIM A K. Graphene: Status and prospects[J]. Science,2009,324(5934):1530-1534. doi: 10.1126/science.1158877
    [15] TAKAI K, TSUJIMURA S, KANG F, et al. Preparation of graphene[J]. Graphene,2020:39-171.
    [16] SEDAGHAT A, RAM M K, ZAYED A, et al. Investigation of physical properties of graphene-cement composite for structural applications[J]. Journal of Composite Materials,2014,4(1):12-21. doi: 10.4236/ojcm.2014.41002
    [17] CAO M L, ZHANG H X, ZHANG C. Effect of graphene on mechanical properties of cement mortars[J]. Journal of Central South University,2016,23(4):919-925. doi: 10.1007/s11771-016-3139-4
    [18] LI G, YUAN J B, ZHANG Y H, et al. Microstructure and mechanical performance of graphene reinforced cementitious composites[J]. Composites Part A: Applied Science and Manufacturing,2018,114:188-195. doi: 10.1016/j.compositesa.2018.08.026
    [19] DIMOV D, AMIT I, GORRIE O, et al. Ultrahigh perfor-mance nanoengineerd graphene-concrete composites for multifunctional applications[J]. Advanced Functional Materials,2018,28(23):1-12.
    [20] VEGA M D, VASQUEZ M. Plasma-functionalized exfoliated multilayered graphene as cement reinforcement[J]. Composites Part A: Applied Science and Manufacturing,2019,160:573-585. doi: 10.1016/j.compositesb.2018.12.055
    [21] KIM B, TAYLOR T, TROY A, et al. The effects of graphene oxide flakes on the mechanical properties of cement mortar[J]. Computers & Concrete,2018,21(3):261-267.
    [22] LEE S J, JEONG S H, KIM D U, et al. Effects of graphene oxide on pore structure and mechanical properties of cementitious composites[J]. Composite Structures,2020,234:111709. doi: 10.1016/j.compstruct.2019.111709
    [23] HO V D, NG C T, OZBAKKALOGLU T, et al. Investigating the reinforcing mechanism and optimized dosage of pristine graphene for enhancing mechanical strengths of cementitious composites[J]. RSC Advances,2020,10(70):42777-42789. doi: 10.1039/D0RA07639B
    [24] LIU J, FU J, YANG Y, et al. Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets[J]. Construction and Building Materials, 2019, 199: 1-11.
    [25] LI H Y, DING S Q, ZHANG L Q, et al. Rheological behaviors of cement pastes with multi-layer graphene[J]. Construction and Building Materials, 2021, 269: 121327.
    [26] RAO C, SUBRAHMANYAM K S, MATTE H R, et al. Graphene: Synthesis, functionalization and properties[J]. Modern Physics Letters B,2011,25(7):427-451. doi: 10.1142/S0217984911025961
    [27] NOVOSELOV K S. Nobel lecture: Graphene: Materials in the flatland[J]. Reviews of Modern Physics,2011,83(3):837-849. doi: 10.1103/RevModPhys.83.837
    [28] 中国国家标准化管理委员会. 混凝土外加剂匀质性试验方法: GB/T 8077—2000[S]. 北京: 中国标准出版社, 2000.

    Standardization Administration of the People's Republic of China. Test method for uniformity of concrete admixture: GB/T 8077—2000[S]. Beijing: Standards Press of China, 2000(in Chinese).
    [29] 中国国家标准化管理委员会. 水泥胶砂强度检测方法: GB/T 17671—1999[S]. 北京: 中国标准出版社, 1999.

    Standardization Administration of the People's Republic of China. Cement mortar strength testing method: GB/T 17671—1999[S]. Beijing: Standards Press of China, 1999(in Chinese).
    [30] SILVA D L, CAMPOS J L E, FERNANDES T F D, et al. Raman spectroscopy analysis of number of layers in mass-produced graphene flakes[J]. Carbon,2020,161:181-189. doi: 10.1016/j.carbon.2020.01.050
    [31] HE Y J, ZHAO X G, LU L N, et al. Effect of C/S ratio on morphology and structure of hydrothermally synthesized calcium silicate hydrate[J]. Journal of Wuhan University of Technology,2011,26(4):770-773. doi: 10.1007/s11595-011-0308-z
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  867
  • HTML全文浏览量:  401
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 修回日期:  2021-10-27
  • 录用日期:  2021-11-03
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回