留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纺锤状羟基氧化铁@聚吡咯复合纳米粒子的制备及其光热治疗肿瘤应用

黄漂 易昌凤 徐祖顺

黄漂, 易昌凤, 徐祖顺. 纺锤状羟基氧化铁@聚吡咯复合纳米粒子的制备及其光热治疗肿瘤应用[J]. 复合材料学报, 2022, 39(7): 3469-3477. doi: 10.13801/j.cnki.fhclxb.20211014.002
引用本文: 黄漂, 易昌凤, 徐祖顺. 纺锤状羟基氧化铁@聚吡咯复合纳米粒子的制备及其光热治疗肿瘤应用[J]. 复合材料学报, 2022, 39(7): 3469-3477. doi: 10.13801/j.cnki.fhclxb.20211014.002
HUANG Piao, YI Changfeng, XU Zushun. Preparation of spindle-shaped hydroxyl ferric oxide@polypyrrole composite nanoparticles and its application in photothermal therapy of tumors[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3469-3477. doi: 10.13801/j.cnki.fhclxb.20211014.002
Citation: HUANG Piao, YI Changfeng, XU Zushun. Preparation of spindle-shaped hydroxyl ferric oxide@polypyrrole composite nanoparticles and its application in photothermal therapy of tumors[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3469-3477. doi: 10.13801/j.cnki.fhclxb.20211014.002

纺锤状羟基氧化铁@聚吡咯复合纳米粒子的制备及其光热治疗肿瘤应用

doi: 10.13801/j.cnki.fhclxb.20211014.002
基金项目: 国家自然科学基金 (51573039)
详细信息
    通讯作者:

    易昌凤,硕士,教授,硕士生导师,研究方向为乳液聚合、超支化聚合物、特种涂料等 E-mail:changfengyi@hubu.edu.cn

  • 中图分类号: TB302

Preparation of spindle-shaped hydroxyl ferric oxide@polypyrrole composite nanoparticles and its application in photothermal therapy of tumors

  • 摘要: 肿瘤是世界上死亡率最高的疾病,研制新型肿瘤药物也是一项极具开发性的研究。首先制备纺锤状羟基氧化铁纳米粒子(FeOOH NPs)并作为模板,与吡咯(Py)聚合得到纺锤状羟基氧化铁@聚吡咯(FeOOH@PPy)复合纳米粒子。采用FTIR、DLS、TEM和UV-vis等测试方法对FeOOH@PPy进行了结构、性质表征,通过光热转换实验证明了该复合纳米粒子具有优异的光热转换性能,探究了复合纳米粒子的生物相容性以及肿瘤治疗中的应用潜力。结果表明,所得到的复合纳米粒子平均粒径100 nm左右,且分布均一,粒子呈纺锤状结构,在水溶液中具有良好的稳定性。FeOOH@PPy复合纳米粒子可以吸收808 nm的近红外光,并将其转化为足够的热量,使肿瘤细胞凋亡;在为期14天的4T1细胞的小鼠模型体内治疗实验中,FeOOH@PPy复合纳米粒子治疗组表现出优异的治疗肿瘤效果,组织分析表明FeOOH@PPy复合纳米粒子对小鼠正常组织无明显影响,具有作为光热治疗剂的潜力。

     

  • 图  1  羟基氧化铁@聚吡咯(FeOOH@PPy)复合纳米粒子的合成路线图

    Figure  1.  Synthesis route of iron hydroxyl oxide@polypyrrole (FeOOH@PPy)

    图  2  (a) FeOOH的FESEM图像;(b) FeOOH@PPy的TEM图像

    Figure  2.  (a) FESEM image of FeOOH; (b) TEM image of FeOOH@PPy

    图  3  动态光散射(DLS)测量的FeOOH@PPy粒径

    Figure  3.  Size of FeOOH@PPy measured by dynamic light scattering (DLS)

    PDI—Polymer dispersity index

    图  4  FeOOH@BSA和FeOOH@PPy的FTIR图谱

    Figure  4.  FTIR spectra of FeOOH@BSA and FeOOH@PPy

    图  5  FeOOH@BSA和FeOOH@PPy紫外吸收图谱

    Figure  5.  UV-vis spectras of FeOOH@BSA and FeOOH@PPy with same concentration (40 μg/mL)

    图  6  FeOOH@PPy分散在去离子水、PBS、生理盐水和DMEM照片(a);7天内FeOOH@PPy在PBS(b)、生理盐水(c)、DMEM (d)中的粒径对比图

    Figure  6.  Digital photos of FeOOH@PPy dispersions in water, PBS, saline and DMEM (a); DLS analysis of the size change of FeOOH@PPy in PBS (b), saline (c) and DMEM (d) in 7 days.

    PBS—Phosphate buffered solution; DMEM—Dulbecco's modified eagle medium

    图  7  (a) FeOOH@PPy浓度为0~320 μg/mL的水溶液中的溶血测定图;(b)不同浓度下FeOOH@PPy的相对溶血率

    Figure  7.  (a) Hemolysis assay of FeOOH@PPy in aqueous solutions with FeOOH@PPy concentrations of 0-320 μg/mL; (b) Relative hemolysis percentages based on concentrations with FeOOH@PPy

    图  8  (a)不同浓度下的FeOOH@PPy的紫外-可见吸收图谱;(b)不同浓度FeOOH@PPy在808 nm处的吸光度的线性拟合曲线,附图为相关FeOOH@PPy分散体的照片;(c)不同浓度FeOOH@PPy在近红外激光(808 nm,1.5 W/cm2)照射10 min的温度变化曲线;(d)不同浓度对应样品的热成像

    Figure  8.  (a) UV-vis absorbance spectrum of FeOOH@PPy under different concentrations in water; (b) Liner fitting of the concentration of FeOOH@PPy to their absorbance at 808 nm, and the inset shows the digital photos of relevant FeOOH@PPy dispersions; (c) Temperature elevation of various concentrations of FeOOH@PPy under the NIR laser irradiation (808 nm,1.5 W/cm2) for 10 min; (d) Thermal imaging of corresponding samples under different concentrations

    图  9  (a) FeOOH@PPy (160 μg/mL)的热循环曲线;(b) FeOOH@PPy循环前后的紫外-可见吸收光谱

    Figure  9.  (a) Circulation curve of FeOOH@PPy (160 μg/mL); (b) UV-vis absorbance spectra of FeOOH@PPy before and after circulation

    图  10  4T1细胞在不同浓度FeOOH@BSA和FeOOH@PPy孵育条件下的细胞活力图

    Figure  10.  The cells viability of 4T1 cells under different condition incubated with different concentrations of FeOOH@BSA and FeOOH@PPy

    Calcein-AM—Calcein acetoxymethyl ester; PI—Propidium iodide

    图  11  空白对照组(PBS)、激光照射对照组(PBS(+))、FeOOH@PPy对照组(FeOOH@PPy)、FeOOH@PPy激光照射组(FeOOH@PPy(+)):(a)不同处理后的体重变化图;(b)不同治疗后肿瘤相对体积变化图

    Figure  11.  Blank control group (PBS), laser irradiation control group (PBS(+)), FeOOH@PPy control group (FeOOH@PPy), FeOOH@PPy laser irradiation group (FeOOH@PPy(+)): (a) Relative body weight after different treatment; (b) Relative tumor volume change after different treatment

    图  12  用FeOOH@PPy和PBS做相应处理后的小鼠主要器官的H&E染色图像

    Figure  12.  H&E stained images of major organs from FeOOH@PPy treated mice and PBS treated mice

  • [1] LUO L, ZHU C, YIN H, et al. Laser immunotherapy in combination with perdurable PD-1 blocking for the treatment of metastatic tumors[J]. ACS Nano,2018,12(8):7647-7662. doi: 10.1021/acsnano.8b00204
    [2] SUN L, LI Q, HOU M, et al. Light-activatable Chlorin e6 (Ce6)-imbedded erythrocyte membrane vesicles camouflaged Prussian blue nanoparticles for synergistic photothermal and photodynamic therapies of cancer[J]. Biomaterials Science,2018,6(11):2881-2895. doi: 10.1039/C8BM00812D
    [3] ZHANG J, YANG J, ZUO T, et al. Heparanase-driven sequential released nanoparticles for ferroptosis and tumor microenvironment modulations synergism in breast cancer therapy[J]. Biomaterials,2021,266:12042.
    [4] ANUSHA K, CHAD K, GRAHAM M. et al. Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma[J]. Clinical Cancer Research,2017,23(1):137-148. doi: 10.1158/1078-0432.CCR-16-0870
    [5] SHANMUGAM V, SELVAKUMAR S, YEH C. Near-infrared light-responsive nanomaterials in cancer therapeutics[J]. Chemical Society Reviews,2014,43(17):6254-6287. doi: 10.1039/C4CS00011K
    [6] WANG R, YANG H, FU R, et al. Biomimetic upconversion nanoparticles and gold nanoparticles for novel simultaneous dual-modal imaging-guided photothermal therapy of cancer[J]. Cancers,2020,12(11):3136. doi: 10.3390/cancers12113136
    [7] GÜRBÜZ B, AYAN S, BOZLAR M, et al. Carbonaceous nanomaterials for phototherapy: A review[J]. Emergent Materials,2020,3:479-502. doi: 10.1007/s42247-020-00118-w
    [8] LU J, CAI L, DAI Y, et al. Polydopamine-based nanoparticles for photothermal therapy/chemotherapy and their synergistic therapy with autophagy inhibitor to promote antitumor treatment[J]. The Chemical Record,2021,21(4):781-796. doi: 10.1002/tcr.202000170
    [9] YU C, XU L, ZHANG Y, et al. Polymer-based nanomaterials for noninvasive cancer photothermal therapy[J]. ACS Applied Polymer Materials,2020,2(10):4289-4305. doi: 10.1021/acsapm.0c00704
    [10] AKAKURU O U, XU C, LIU C, et al. Metal-free organo-theranostic nanosystem with high nitroxide stability and loading for image-guided targeted tumor therapy[J]. ACS Nano,2021,15(2):3079-3097. doi: 10.1021/acsnano.0c09590
    [11] LIU X, ZHANG M, YAN D, et al. A smart theranostic agent based on Fe-HPPy@Au/DOX for CT imaging and PTT/chemotherapy/CDT combined anticancer therapy[J]. Biomaterials Science,2020,8(15):4067-4072. doi: 10.1039/D0BM00623H
    [12] YIN Y, HAO Y, WANG N, et al. PPy nanoneedle based nanoplatform capable of overcoming biological barriers for synergistic chemo-photothermal therapy[J]. RSC Advances,2020,10(13):7771-7779. doi: 10.1039/C9RA09917D
    [13] BLANCO E, SHEN H, FERRARI M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nature Biotechnology,2015,33(9):941-951. doi: 10.1038/nbt.3330
    [14] OZAKI M, KRATOHVIL S, MATIJEVIC E. Formation of monodispersed spindle-type hematite particles[J]. Academic Press,1984,102(1):146-151.
    [15] LIU H, HU Y, SUN Y, et al. Co-delivery of bee venom melittin and a photosensitizer with an organic-inorganic hybrid nanocarrier for photodynamic therapy and immunotherapy[J]. ACS Nano,2019,13(11):12638-12652. doi: 10.1021/acsnano.9b04181
    [16] 张书海. 集核磁共振成像与光热治疗于一体的硫化铜纳米粒子的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    ZHANG Shuhai. Study of copper sulfide nanoparticles with magnetic resonance imaging and photothermal therapy[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese).
    [17] ZHAI Y, WANG J, QIU L. Drug-driven self-assembly of pH-sensitive nano-vesicles with high loading capacity and anti-tumor efficacy.[J]. Biomaterials Science,2021,9(9):3348-3361. doi: 10.1039/D0BM01987A
    [18] GENG S, ZHAO H, ZHAN G, et al. Injectable in situ forming hydrogels of thermosensitive polypyrrole nanoplatforms for precisely synergistic photothermo- chemotherapy[J]. ACS Applied Materials & Interfaces,2020,12(7):7995-8005.
    [19] WU H, CHENG K, HE Y, et al. Fe3O4-based multifunctional nanospheres for amplified magnetic targeting photothermal therapy and Fenton reaction[J]. ACS Biomaterials Science & Engineering,2018,5(2):1045-1056.
    [20] KONG G, BRAUN R D, DEWHIRST M W. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature[J]. Cancer Research,2001,61(7):3027-3032.
  • 加载中
图(12)
计量
  • 文章访问数:  765
  • HTML全文浏览量:  490
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 修回日期:  2021-08-19
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-10-15
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回