留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面改性对聚丙烯-玻璃纤维复合材料力学性能影响

黄云刚 黄维龙 洪浩群 张海燕

黄云刚, 黄维龙, 洪浩群, 等. 界面改性对聚丙烯-玻璃纤维复合材料力学性能影响[J]. 复合材料学报, 2022, 39(7): 3156-3166. doi: 10.13801/j.cnki.fhclxb.20210916.006
引用本文: 黄云刚, 黄维龙, 洪浩群, 等. 界面改性对聚丙烯-玻璃纤维复合材料力学性能影响[J]. 复合材料学报, 2022, 39(7): 3156-3166. doi: 10.13801/j.cnki.fhclxb.20210916.006
HUANG Yungang, HUANG Weilong, HONG Haoqun, et al. Effect of interface modification on mechanical properties of polypropylene-glass fiber composites[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3156-3166. doi: 10.13801/j.cnki.fhclxb.20210916.006
Citation: HUANG Yungang, HUANG Weilong, HONG Haoqun, et al. Effect of interface modification on mechanical properties of polypropylene-glass fiber composites[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3156-3166. doi: 10.13801/j.cnki.fhclxb.20210916.006

界面改性对聚丙烯-玻璃纤维复合材料力学性能影响

doi: 10.13801/j.cnki.fhclxb.20210916.006
基金项目: 东莞创新研究项目(20200607212008); 广东省科技规划项目(2014A010105047); 广东省科技规划项目(201707010367); 广东省自然科学基金(2021110405)
详细信息
    通讯作者:

    洪浩群,博士,研究员,硕士生导师,研究方向为聚合物加工 E-mail: pshqho-ng@gmail.com

    张海燕,博士,教授,博士生导师,研究方向为超级电容器、导热聚合物基材料 E-mail: hyzhang@gdut.edu.cn

  • 中图分类号: TB332

Effect of interface modification on mechanical properties of polypropylene-glass fiber composites

  • 摘要: 聚合物的填充改性及共混改性是通用塑料高性能化的重要方法。界面相容性是聚合物改性通常遇到的问题,如何提高复合材料界面相容性以及探索界面相容性和泊松比相关性仍然是聚合物改性重要的话题。采用固相法制备三元单体接枝聚丙烯(GPP),与玻璃纤维和聚丙烯共混制备聚丙烯-玻璃纤维(PP-GF)复合材料。采用视频引伸计、差示扫描量热法、扫描电镜、红外光谱、动态流变测试、万能拉力试验等分析测试方法表征复合材料的结构与性能。结果表明,GPP的加入提高PP-GF复合材料界面强度。随着GPP增加,储能模量(G')和损耗模量(G'')都在增加,G'增加的幅度大于G'',因此复合材料体系表现出弹性行为要明显大于粘性行为。添加7wt%GPP的PP-GF复合材料力学性能最佳,通过Cole-Cole曲线得到了验证。红外光谱和扫描电镜结果表明,GPP和玻璃纤维形成了界面层,改善了树脂与玻璃纤维界面相容性,提高了玻璃纤维在聚丙烯中应力传递。GPP作为PP-GF复合材料提高界面相容性改性剂,PP-GF复合材料拉伸时形成了更大的横向应变,且泊松比变小,提高了复合材料的力学性能。

     

  • 图  1  三元单体接枝聚丙烯(GPP)制备过程

    Figure  1.  Preparation process of ternary monomer graft polypropylene (GPP)

    图  2  GPP和聚丙烯013 (CPP)的FTIR图谱

    Figure  2.  FTIR spectra of GPP and polypropylene 013 (CPP)

    图  3  聚丙烯-玻璃纤维复合材料制备过程

    Figure  3.  Preparation process of polypropylene glass fiber composites

    图  4  聚丙烯-玻璃纤维复合材料测试试样光学照片

    Figure  4.  Optical photos of polypropylene-glass fiber composite test sample

    图  5  GPP质量分数对PP-GF复合材料无缺口冲击性能影响

    Figure  5.  Effect of mass fraction of GPP on unnotched impact properties of PP-GF composites

    图  6  GPP质量分数对PP-GF复合材料拉伸强度和断裂伸长率影响

    Figure  6.  Effect of mass fraction of GPP on tensile strength and elongation at break of PP-GF composites

    图  7  GPP质量分数对PP-GF复合材料弯曲强度和弯曲模量影响

    Figure  7.  Effect of mass fraction of GPP on flexural strength and flexural modulus of PP-GF composites

    图  8  GPP质量分数对PP-GF复合材料界面强度参数B影响

    Figure  8.  Effect of mass fraction of GPP on interfacial strength parameter B of PP-GF composites

    图  9  不同GPP质量分数的PP-GF复合材料的DSC放热峰

    Figure  9.  DSC exothermic peaks of PP-GF composites with different GPP mass fractions

    图  10  不同GPP质量分数的PP-GF复合材料的DSC吸热峰

    Figure  10.  DSC endothermic peaks of PP-GF composites with different GPP mass fractions

    图  11  不同GPP质量分数PP-GF复合材料的复数粘度

    Figure  11.  Complex viscosity of PP-GF composites with different GPP mass fractions

    图  12  不同GPP质量分数PP-GF复合材料的储能模量

    Figure  12.  Storage modulus of PP-GF composites with different GPP mass fractions

    图  13  不同GPP质量分数PP-GF复合材料的损耗模量

    Figure  13.  Loss modulus of PP-GF composites with different GPP mass fractions

    图  14  180℃下不同GPP质量分数的PP-GF复合材料的Cole-Cole图

    Figure  14.  Cole-Cole diagram of PP-GF composites with different GPP mass fractions at 180℃

    图  15  添加0wt%GPP和11wt%GPP的PP-GF复合材料的FTIR图谱

    Figure  15.  FTIR spectra of PP-GF composites with 0wt%GPP and 11wt%GPP

    图  16  添加0wt%GPP、5wt%GPP和11wt%GPP的PP-GF复合材料的断面形貌

    Figure  16.  Section morphology of PP-GF composites with 0wt%GPP, 5wt%GPP and 11wt%GPP

    图  17  添加0wt%GPP、5wt%GPP和11wt%GPP的PP-GF复合材料样品横向应变曲线

    Figure  17.  Lateral strain diagram of PP-GF composites with 0wt%GPP, 5wt%GPP and 11wt%GPP

    图  18  添加0wt%GPP、5wt%GPP和11wt%GPP的PP-GF复合材料泊松比测试结果

    Figure  18.  Poisson's ratio test results for PP-GF composites with 0wt%GPP, 5wt%GPP and 11wt%GPP

    表  1  主要实验材料

    Table  1.   Experimental materials

    Raw materialsGradeProduction company
    Polypropylene (PP) 013 Maoming Petro-Chemical Shihua Co., Ltd.
    Maleic anhydride (MAH) AR Shanghai Macklin Biochemical Co., Ltd.
    Methyl methacrylate (MMA) AR Shanghai Macklin Biochemical Co., Ltd.
    Butyl acrylate (BA) AR Shanghai Macklin Biochemical Co., Ltd.
    Xylene AR Tianjin Damao Chemical Reagent Factory
    Short glass fibre (SGF) ECS 10-3 Taiwan Fiberglass Co., Ltd.
    Dicumyl peroxide (DCP) AR Tianjin Damao Chemical Reagent Factory
    下载: 导出CSV

    表  2  PP-GF复合材料的配比

    Table  2.   Formulation of PP-GF composites

    PP/wt%Glass fiber/wt%GPP/wt%
    100 0 0
    70 30 0
    69 30 1
    67 30 3
    65 30 5
    63 30 7
    61 30 9
    59 30 11
    下载: 导出CSV
  • [1] KHANDELWAL S, RHEE K Y. Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface[J]. Composites Part B:Engineering,2020,192:108011. doi: 10.1016/j.compositesb.2020.108011
    [2] XIE Z, WU K, LIU D, et al. One-step alkyl-modification on boron nitride nanosheets for polypropylene nanocompo-sites with enhanced thermal conductivity and ultra-low dielectric loss[J]. Composites Science and Technology,2021,208:108756. doi: 10.1016/j.compscitech.2021.108756
    [3] AGARWAL J, MOHANTY S, NAYAK SK. Influence of cellulose nanocrystal/sisal fiber on the mechanical, thermal, and morphological performance of polypropylene hybrid composites[J]. Polymer Bulletin,2020,78(3):1609-1635.
    [4] AGARWAL J, MOHANTY S, NAYAK SK. Valorization of pineapple peel waste and sisal fiber: Study of cellulose nanocrystals on polypropylene nano-composites[J]. Journal of Applied Polymer Science,2020,137(42):e49291. doi: 10.1002/app.49291
    [5] ALEXANDRESCU L, SNMEZ M, GEORGES-CU M, et al. Polyamide/Polypropylene/graphite nanocomposites with functional compatibilizers: Morpho-structural and physico-mechanical characterization[J]. Procedia Structural Integrity, 2017, 5: 675-682.
    [6] SZABO L, IMANISHI S, HIROSE D, et al. Mussel-inspired design of a carbon fiber-cellulosic polymer interface toward engineered biobased carbon fiber-reinforced composites[J]. ACS Omega,2020,5(42):27072-27082. doi: 10.1021/acsomega.0c02356
    [7] BORYSIAK S, GRZABKA A, ODALANOW-SKA M, et al. The effect of chemical modification of wood in ionic liquids on the super-molecular structure and mechanical properties of wood/poly-propylene composites[J]. Cellulose, 2018, 25(8): 4639-4652.
    [8] HAJJ EI N, SEIF S, SALIBA K, et al. Recycling of plastic mixture wastes as carrier resin for short glass fiber compo-sites[J]. Waste and Biomass Valorization,2018,11(5):2261-2271.
    [9] HAJJ EI N, SEIF S, ZGHEIB N K. Recycling of poly(propy-lene)-based car bumpers as carrier resin for short glass fiber composites[J]. Journal of Material Cycles and Waste Management,2020,23(1):288-300.
    [10] DONG Y, BHATTACHARYYA D. Effects of clay type, clay/compatibilizer content and matrix viscosity on the mechanical properties of Polypropylene/organoclay nanocomposites[J]. Composites Part A: Applied Science and Manufacturing,2018,39(7):1177-1191.
    [11] FRANCISZCZAK P, KALNINS K, BLEDZKI K A. Hybridisation of man-made cellulose and glass reinforcement in short-fibre composites for injection moulding-Effects on mechanical performance[J]. Composites Part B: Enginee-ring,2018,145:14-27. doi: 10.1016/j.compositesb.2018.03.008
    [12] RAHMAN A N, HASSAN A, HEIDARIAN J. Effect of compa-tibilizer on the properties of polypropylene/glass fibre/nanoclay composites[J]. Polímeros,2018,28(2):103-111.
    [13] JIANG J W, PARK H S. Negative poisson's ratio in single-layer black phosphorus[J]. Nature Communications,2014,5:4727. doi: 10.1038/ncomms5727
    [14] ZHOU G, SUN Q, LI D, et al. Meso-scale modeling and damage analysis of carbon/epoxy woven fabric composite under in-plane tension and compression loadings[J]. International Journal of Mechanical Sciences,2021,190:1-42.
    [15] MENTRASTI L, MOLARI L, FABIANI M. Poisson's ratio bounds in orthotropic materials. Application to natural composites: Wood, bamboo and Arundo donax[J]. Composites Part B: Engineering,2021,209:108612. doi: 10.1016/j.compositesb.2021.108612
    [16] YAN X, CAYLA A, DEVAUX E, et al. Simultaneous surface modification and mechanical enhancement of micro/nano-fiber fabrics achieved by Janus particles[J]. Express Polymer Letters,2021,15(7):626-640. doi: 10.3144/expresspolymlett.2021.53
    [17] WAN H, FAN L, HAN Q, et al. Micromechanical modeling over two length-scales for elastic properties of graphene nanoplatelet/graphite fiber/polyimide composites[J]. Materials Chemistry and Physics,2021,262:124255. doi: 10.1016/j.matchemphys.2021.124255
    [18] 刘冬冬, 扈艳红, 张芳芳, 等. 叠氮苯并咪唑偶联剂增强国产芳纶-聚三唑树脂复合材料界面[J]. 复合材料学报, 2017, 34(2):336-344.

    LIU Dongdong, HU Yanhong, ZHANG Fangfang, et al. The interface of domestic aramid-polytriazole resin compo-sites was reinforced by azido benzimidazole coupling agent[J]. Acta Materae Compositae Sinica,2017,34(2):336-344(in Chinese).
    [19] WEI K, PENG Y, QU Z, et al. A cellular meta-structure incor-porating coupled negative thermal expansion and nega-tive Poisson's ratio[J]. Inter-national Journal of Solids and Structures,2018,150:255-267. doi: 10.1016/j.ijsolstr.2018.06.018
    [20] 杨霞, 杨鸣波, 李忠明, 等. 具有负泊松比效应的聚烯烃共混物[J]. 高分子学报, 2003(2):221-224. doi: 10.3321/j.issn:1000-3304.2003.02.013

    YANG Xia, YANG Mingbo, LI Zhongming, et al. The nega-tive Poisson’s ratio effect of polyolefin blends[J]. Acta Polymerica Sinica,2003(2):221-224(in Chinese). doi: 10.3321/j.issn:1000-3304.2003.02.013
    [21] ZHANG M, COLBY R, MILNER S, et al. Synthesis and cha-racterization of maleic anhydride grafted polypropylene with a well-defined molecular structure[J]. Macromole-cules,2013,46:4313-4323. doi: 10.1021/ma4006632
    [22] 陈淼灿, 刘涛, 赵玲, 等. 非水滴定和傅立叶红外光谱在聚丙烯马来酸酐接枝物表征中的应用[J]. 功能高分子学报. 2005, 18(2): 335-339.

    CHEN Miaocan, LIU Tao, ZHAO Ling, et al. Characterization of polypropylene maleic anhydride grafts by non-droplet steady-state and Fourier transform infrared spectroscopy. Journal of Functional Polymers[J]. 2005, 18(2): 335-339. (in Chinese)
    [23] International Organization for Standardization.Plastics-Determination of tensile properties-Part 1: General principles: ISO 527-1:2012[S]. Geneva: ISO, 2012.
    [24] International Organization for Standardization.Plastics-Determination of flexural properties: ISO 178:2019(E)[S]. ISO:Geneva, 2019.
    [25] International Organization for Standardization.Plastics-Determination of Charpy impact properties-Part 1: Non-instrumented impact test: ISO 527-1:2010[S]. ISO:Geneva, 2010.
    [26] TURCSANYI B, PUKANSZKY B, TUDOS F. Composition dependence of tensile yield stress in filled polymers[J]. Journal of Materials Science Letters,1988,7(2):160-162. doi: 10.1007/BF01730605
    [27] PUKÁNSZKY B. Influence of interface interaction on the ultimate tensile properties of polymer composites[J]. Composites,1990,21:255-262. doi: 10.1016/0010-4361(90)90240-W
    [28] YING Z, WU D, ZHANG M, et al. Polylactide/basalt fiber composites with tailorable mechanical properties: effect of surface treatment of fibers and annealing[J]. Composite Structures,2017,176:1020-1027. doi: 10.1016/j.compstruct.2017.06.042
    [29] BETTINI S, BICUDO A, AUGUSTO I, et al. Investigation on the use of coir fiber as alternative reinforcement in polypropylene[J]. Journal of Applied Polymer Science,2010,118:2841-2848. doi: 10.1002/app.32418
    [30] SABRI I, BAKAR M, ROSDI N, et al. Effects on MAPP compatibilizer on mechanical properties of kenaf core fibre/graphene nanoplatelets reinforced polypropylene hybrid composites[C]. IOP Conf. Series: Earth and Environmental Science, 2020, 596: 012023.
    [31] 陈家俊, 白绘宇, 王炜, 等. 动态流变学对PVDF/PTW共混物相容性研究[J]. 高分子学报, 2016(3):315-323. doi: 10.11777/j.issn1000-3304.2016.15206

    CHEN Jiajun, BAI Huiyu, WANG Wei, et al. Study on the compatibility of PVDF/PTW blends by dynamic rheology[J]. Acta Polymerica Sinca,2016(3):315-323(in Chinese). doi: 10.11777/j.issn1000-3304.2016.15206
    [32] MUZATA T S, L J P, KAR G P, et al. Phase miscibility and dynamic heterogeneity in PMMA/SAN blends through solvent free reactive grafting of SAN on graphene oxide[J]. Physical Chemistry Chemical Physics,2018,20:19470-19485. doi: 10.1039/C8CP02716A
    [33] 刘文庆, 李强, 姜秉元. 泊松比对复合材料层板断裂韧性的影响[J]. 纤维复合材料, 2001(2):27-28. doi: 10.3969/j.issn.1003-6423.2001.02.007

    LIU Wenqing, LI Qiang, JIANG Bingyuan. Effect of Poisson's ratio on fracture toughness of composite lami-nates[J]. Fiber Composites,2001(2):27-28(in Chinese). doi: 10.3969/j.issn.1003-6423.2001.02.007
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  749
  • HTML全文浏览量:  271
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-08-13
  • 录用日期:  2021-08-29
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回