留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维-超高分子量聚乙烯纤维混杂增强环氧树脂复合材料低速冲击性能与失效机制

仲越 徐铭涛 王萍 李媛媛 张岩

仲越, 徐铭涛, 王萍, 等. 碳纤维-超高分子量聚乙烯纤维混杂增强环氧树脂复合材料低速冲击性能与失效机制[J]. 复合材料学报, 2022, 39(7): 3202-3211. doi: 10.13801/j.cnki.fhclxb.20210909.008
引用本文: 仲越, 徐铭涛, 王萍, 等. 碳纤维-超高分子量聚乙烯纤维混杂增强环氧树脂复合材料低速冲击性能与失效机制[J]. 复合材料学报, 2022, 39(7): 3202-3211. doi: 10.13801/j.cnki.fhclxb.20210909.008
ZHONG Yue, XU Mingtao, WANG Ping, et al. Low-velocity impact properties and failure mechanism of carbon fiber-UHMWPE fiber hybrid reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3202-3211. doi: 10.13801/j.cnki.fhclxb.20210909.008
Citation: ZHONG Yue, XU Mingtao, WANG Ping, et al. Low-velocity impact properties and failure mechanism of carbon fiber-UHMWPE fiber hybrid reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3202-3211. doi: 10.13801/j.cnki.fhclxb.20210909.008

碳纤维-超高分子量聚乙烯纤维混杂增强环氧树脂复合材料低速冲击性能与失效机制

doi: 10.13801/j.cnki.fhclxb.20210909.008
基金项目: 国家自然科学基金青年项目 (11802192);江苏省自然基金青年项目(BK20180244)
详细信息
    通讯作者:

    李媛媛,博士,副教授,硕士生导师,研究方向为纺织结构复合材料  E-mail: yyli2017@suda.edu.cn

    张岩,博士,副教授,硕士生导师,研究方向为三维织物、材料力学 E-mail: yanzhang86@suda.edu.cn

  • 中图分类号: TB332

Low-velocity impact properties and failure mechanism of carbon fiber-UHMWPE fiber hybrid reinforced epoxy resin composites

  • 摘要: 碳纤维/环氧树脂基复合材料层合板在航天、汽车等领域应用广泛,使用中难免遇到低速冲击事件(生产使用过程中工具坠落等)产生安全隐患,分层破坏是其受到低速冲击后的主要损伤形式,会严重影响复合材料层合板的强度和使用寿命。为提高其抗冲击性能,通过短纤维增韧的方式探究超高分子量聚乙烯短纤维的铺层数量和铺层位置对复合材料层合板低速冲击性能的影响。研究结果表明:添加6层短纤维的复合材料层合板最大载荷由3.19 kN增加到4.86 kN,吸收能量由18.27 J增加到28.89 J,分别提高了52.3%和58.12%。冲击后剩余强度明显提高,两层短纤维铺层增韧方式的复合材料层合板冲击后剩余强度最大,为164.73 MPa,相比原样提高95%。超高分子量聚乙烯短纤维加入后复合材料层合板的冲击损伤阻抗提高,冲击后的凹痕深度下降,并且抗分层能力提升。其增韧机制是断裂面表面能增加,冲击使部分纤维被拔出,出现纤维桥联现象,拔出的纤维会降低分层前沿的应力集中,增大分层扩展的阻力,使分层破坏在扩展过程中需要消耗更多的能量,有效阻碍了裂纹的传播。

     

  • 图  1  碳纤维-超高分子量聚乙烯纤维混杂增强环氧树脂复合材料(CF-UHMWPESF/EP)层合板固化工艺流程

    Figure  1.  Curing process of carbon fiber-ultra-high molecular weight polyethylene fiber hybrid reinforced epoxy resin composite (CF-UHMWPESF/EP) laminate

    VARTM—Vacuum assisted resin transfer molding

    图  2  复合材料层合板低速冲击测试(a)、凹痕测试(b)、冲击后压缩测试(c)

    Figure  2.  Low-velocity impact test (a), dent test (b), post-impact compression test (c) for composite laminates

    图  3  相同冲击能量(6.7 J/mm)下不同铺层方式的CF-UHMWPESF/EP层合板载荷-位移曲线

    Figure  3.  Load-displacement curves of CF-UHMWPESF/EP laminates with different ply modes under the same impact energy (6.7 J / mm)

    图  4  相同冲击能量(6.7 J/mm)下不同铺层方式CF-UHMWPESF/EP层合板最大载荷

    Figure  4.  Max load of CF-UHMWPESF/EP laminates with different ply methods under the same impact energy (6.7 J/mm)

    图  5  相同冲击能量(6.7 J/mm)下不同铺层方式的CF-UHMWPESF/EP层合板载荷-时间曲线

    Figure  5.  Load-time curves of CF-UHMWPESF/EP laminates with different ply methods under the same impact energy (6.7 J/mm)

    图  6  相同冲击能量(6.7 J/mm)下不同铺层方式的CF-UHMWPESF/EP 层合板能量-时间曲线

    Figure  6.  Energy-time curves of CF-UHMWPESF/EP laminates with different ply methods under the same impact energy (6.7 J/mm)

    Ei—Total impact energy; Ea—Absorbed energy; Ee—Elastic energy

    图  7  相同冲击能量(6.7 J/mm)下不同铺层方式的CF-UHMWPESF/EP层合板能量吸收

    Figure  7.  Absorbed energy of CF-UHMWPESF/EP laminates with different ply methods under the same impact energy (6.7 J/mm)

    图  8  相同冲击能量(6.7 J/mm)下不同铺层结构的CF-UHMWPESF/EP 层合板冲击后剩余强度(CAI)

    Figure  8.  Residual strength after impact (CAI) of CF-UHMWPESF/EP laminates with different ply structures under the same impact energy (6.7 J/mm)

    图  9  冲击后不同铺层方式的CF-UHMWPESF/EP 层合板损伤区域图

    Figure  9.  Damage area diagram of CF-UHMWPESF/EP laminates with different ply methods after impact

    图  10  相同冲击能量下CF-UHMWPESF/EP 层合板:(a) 凹痕深度变化曲线;(b) 凹痕3D示意图

    Figure  10.  Under the same impact energy of CF-UHMWPESF/EP laminates: (a) Change curve of dent depth; (b) 3D sketch of dent

    图  11  冲击后不同铺层结构的CF-UHMWPESF/EP 层合板损伤截面图

    Figure  11.  Damage cross sections of CF-UHMWPESF/EP laminates with different ply structures after impact

    图  12  冲击后压缩强度测试后的CF-UHMWPESF/EP层合板损伤截面

    Figure  12.  Damage section after compression strength test after impact of CF-UHMWPESF/EP laminates with different ply structures

    表  1  Carbon fiber-UHMWPE fiber hybrid reinforced epoxy resin composites层合板铺层方案

    Table  1.   Stacking scheme of CF-UHMWPESF/EP laminates

    AlternativesStacking sequenceToughening layersThickness/mmFiber volume fraction/vol%
    C903.4151
    C9U2-A23.8353
    C9U2-B23.9453
    C9U2-C23.8053
    C9U4-A44.4953
    C9U4-B44.6354
    C9U4-C44.7354
    C9U6-A65.0754
    C9U6-B65.2454
    C9U6-C65.1954
    Notes:
    下载: 导出CSV
  • [1] BORIA S, SCATTINA A, BELINGARD G. Impact behavior of a fully thermoplastic composite[J]. Composite Structures,2017,167:63-75.
    [2] GURURAJA M N, HARI RAO A N. A review on recent applications and future prospectus of hybrid composites[J]. International Journal of Soft Computing and Engineering (IJSCE),2012,1(6):352-355.
    [3] TAKEDA N, OKABE Y, KUWAHARA J, et al. Development of smart composite structures with small diameter fiber bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing[J]. Composites Science and Technology,2005,65(15-16):2575-2587. doi: 10.1016/j.compscitech.2005.07.014
    [4] LIU Z, ZHANG H, ZHANG N, et al. The preparation and application of CTNB modified epoxy adhesive[J]. Pigment & Resin Technology,2015,44(6):358-363.
    [5] SONG L F, LU S R, XIAO X N, et al. Enhanced thermal and mechanical properties of liquid crystalline-grafted graphene oxide filled epoxy composites[J]. Polymer Bulletin,2017,74(5):1611-1627. doi: 10.1007/s00289-016-1792-2
    [6] ARADHANA R, MOHANTY S, NAYAK S K. Novel electrically conductive epoxy /reduced graphite oxide / silica hollow microspheres adhesives with enhanced lap shear strength and thermal conductivity[J]. Composites Science and Technology,2019,169:86-94. doi: 10.1016/j.compscitech.2018.11.008
    [7] SALOM C, PROLONGO M G, TORIBIO A, et al. Mechanical properties and adhesive behavior of epoxy-graphene nanocomposites[J]. International Journal of Adhesion and Adhesives,2018,84:119-125. doi: 10.1016/j.ijadhadh.2017.12.004
    [8] KNOPP A, SCHARR G. Effect of z-pin surface treatment on delamination and debonding properties of z-pinned composite laminates[J]. Journal of Materials Science,2014,49(4):1674-1683. doi: 10.1007/s10853-013-7851-2
    [9] JAIN L K, MAI Y W. Determination of mode II delamination toughness of stitched laminated composites[J]. Composites Science and Technology,1995,55(3):241-253. doi: 10.1016/0266-3538(95)00089-5
    [10] LI G, LI P, ZHANG C, et al. Inhomogeneous toughening of carbon fiber/ epoxy composite using electro spin polysulfone nanofibrous membranes by in situ phase separation[J]. Composites Science and Technology,2008,68(68):987-994.
    [11] AKANGAH P, LINGAIAH S, SHIVAKUMAR K. Effect of Nylon-66 nano-fiber interleaving on impact damage resistance of epoxy/carbon fiber composite laminates[J]. Composites Structure,2010,92:1432-1439. doi: 10.1016/j.compstruct.2009.11.009
    [12] KHEIRKHAN B P, REZADOUST A M, LATIFI M, et al. The experimental and numerical study on the effect of PVB nanofiber mat thickness on interlaminar fracture toughness of glass/phenolic composites[J]. Engineering Fracture Mechanics,2018,194:145-153. doi: 10.1016/j.engfracmech.2018.03.027
    [13] MO Z C, HU C Y. Interlayer-toughening carbon fiber/epoxy composites with short ramie fiber[J]. Acta Materiae Compositae Sinica,2017,6(34):1000-3851.
    [14] SOHN M S, HU X Z. Delamination behavior of carbon fiber/epoxy composite laminates with short fiber reinforcement[J]. Scripta Metallurgica et Materialia,1994,30(11):1461-1472. doi: 10.1016/0956-716X(94)90246-1
    [15] HUANG B Z, HU X Z, LIU J. Modelling of inter-laminar toughening from chopped Kevlar fibers[J]. Composites Science and Technology,2004,64(13):2165-2175.
    [16] CHOLAKE S, MORAN G, JOE B, et al. Improved mode I fracture resistance of CFRP composites by reinforcing epoxy matrix with recycled short milled carbon fiber[J]. Construction and Building Materials,2016,111:399-407. doi: 10.1016/j.conbuildmat.2016.02.039
    [17] SUN Z, HU X Z, CHEN H R. Effects of aramid-fiber toughening on interfacial fracture toughness of epoxy adhesive joint between carbon-fiber face sheet and aluminium substrate[J]. International Journal of Adhesion and Adhesives,2014,48:288-94. doi: 10.1016/j.ijadhadh.2013.09.023
    [18] HU Y, LIU W W, SHI Y Y. Low-velocity impact damage research on CFRPs with Kevlar-fiber toughening[J]. Composite Structures,2019,216:127-141. doi: 10.1016/j.compstruct.2019.02.051
    [19] TOYEN D, WIMOLMAL E, SOMBATSOMPOP N. Sm2O3/UHMWPE composites for radiation shielding applications: Mechanical and dielectric properties under gamma irradiation and thermal neutron shielding[J]. Radiation Physics and Chemistry,2019,164:108366.
    [20] DUCRET S, ZAHOUANI H, MIDOL A. Friction and abrasive wear of UHWMPE sliding on ice[J]. Wear,2005,258(1-4):26-31. doi: 10.1016/j.wear.2004.09.026
    [21] 范豪. VARTM 中树脂充模过程的数值模拟与实验研究[D]. 哈尔滨: 东北林业大学, 2017

    FAN Hao. Numerical simulation and experimental study on resin filling process in VARTM [D]. Harbin: Northeast Forestry University, 2017(in Chinese).
    [22] ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM-D7136/D7136M—2015 [S]. West Conshohocken, PA: ASTM International, 2015-03-15.
    [23] ASTM International. Standard test method for compressive residual strength of damaged polymer matrix composite plates: ASTM D7137M—2005 [S]. West Conshohocken, PA: ASTM International, 2005-04-01.
    [24] SHYR T W, PAN Y H. Impact resistance and damage characteristics of composite laminates[J]. Composite Structures,2003,62:193-203. doi: 10.1016/S0263-8223(03)00114-4
    [25] ZHANG D, SUN Y, CHEN L. A comparative study on low-velocity impact response of fabric composite laminates[J]. Materials and Design,2013,50:750-756. doi: 10.1016/j.matdes.2013.03.044
    [26] BRUNNER A J, BLACKMAN B R K, DAVIES P. A status report on delamination resistance testing of polymer-matrix composites[J]. Engineering Fracture Mechanics,2007,75(9):2779-2794.
    [27] BRUNNER A J, BLACKMAN B R K. Delamination fracture in cross-ply laminates: What can be learned from experiment?[J]. European Structural Integrity Society,2003,32:433-444.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1115
  • HTML全文浏览量:  421
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 修回日期:  2021-08-18
  • 录用日期:  2021-08-21
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回