留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BiOBr/Bi复合光热粉体的制备及其界面光热驱动水蒸发性能

薛超瑞 李洋森 黄蕊蕊 薛睿智 黄耿鸿 郝杰

薛超瑞, 李洋森, 黄蕊蕊, 等. BiOBr/Bi复合光热粉体的制备及其界面光热驱动水蒸发性能[J]. 复合材料学报, 2022, 39(7): 3271-3280. doi: 10.13801/j.cnki.fhclxb.20210909.001
引用本文: 薛超瑞, 李洋森, 黄蕊蕊, 等. BiOBr/Bi复合光热粉体的制备及其界面光热驱动水蒸发性能[J]. 复合材料学报, 2022, 39(7): 3271-3280. doi: 10.13801/j.cnki.fhclxb.20210909.001
XUE Chaorui, LI Yangsen, HUANG Ruirui, et al. Preparation of BiOBr/Bi composite photothermal powder and its interfacial photothermal driven water evaporation performance[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3271-3280. doi: 10.13801/j.cnki.fhclxb.20210909.001
Citation: XUE Chaorui, LI Yangsen, HUANG Ruirui, et al. Preparation of BiOBr/Bi composite photothermal powder and its interfacial photothermal driven water evaporation performance[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3271-3280. doi: 10.13801/j.cnki.fhclxb.20210909.001

BiOBr/Bi复合光热粉体的制备及其界面光热驱动水蒸发性能

doi: 10.13801/j.cnki.fhclxb.20210909.001
基金项目: 国家自然科学基金 (51602292);山西省高等学校科技创新项目(2019L0589)
详细信息
    通讯作者:

    薛超瑞,博士,副教授,硕士生导师,研究方向为太阳能转化与利用 E-mail: crxue87@126.com

  • 中图分类号: O614.53

Preparation of BiOBr/Bi composite photothermal powder and its interfacial photothermal driven water evaporation performance

  • 摘要: 针对太阳能转化应用,溴氧化铋(BiOBr)光催化性能优异,但其光热性能及应用有待研究开发。首先采用水热法制备了BiOBr纳米片粉末,然后利用硼氢化钠(NaBH4)对BiOBr粉末进行化学还原。样品表征结果显示,随着硼氢化钠浓度增加,致密的BiOBr纳米片首先转变为BiOBr/Bi复合多孔纳米片,然后转变为金属Bi多孔纳米片。金属Bi及多孔结构的形成有助于提升材料的光吸收性能及比表面积。经过20 g·L−1 NaBH4溶液还原得到的BiOBr/Bi多孔纳米片具有最优的光吸收性能和比表面积,且润湿性能优异。光热驱动水蒸发测试结果表明,20 g·L−1 NaBH4还原得到的BiOBr/Bi复合多孔纳米片具有最优的光热驱动水蒸发性能,水蒸发速率可达2.18 kg·m−2·h−1,为纯BiOBr纳米片的2倍。

     

  • 图  1  (a)样品及光热薄膜的制备示意图;(b)光热驱动水蒸发实验示意图

    Figure  1.  Schematic diagram of the preparation of samples and photothermal film (a) and photothermal driven water evaporation setup (b)

    BiOBr/Bi-5—BiOBr is chemically reduced by NaBH4 with concentration of 5 g·L−1

    图  2  BiOBr及BiOBr/Bi样品的XRD图谱

    Figure  2.  XRD patterns of BiOBr and BiOBr/Bi samples

    图  3  BiOBr/Bi-20样品的XPS宽图谱(a)及高分辨窄图谱((b)~(d))

    Figure  3.  Wide-scanning (a) and nearrow-scanning ((b)-(d)) XPS spectras of BiOBr/Bi-20 sample

    图  4  BiOBr和BiOBr/Bi样品的TEM图像:(a) BiOBr;(b) BiOBr/Bi-5;(c) BiOBr/Bi-20;(d) BiOBr/Bi-50;(e) BiOBr/Bi-100

    Figure  4.  TEM images of BiOBr and BiOBr/Bi samples: (a) BiOBr; (b) BiOBr/Bi-5; (c) BiOBr/Bi-20; (d) BiOBr/Bi-50; (e) BiOBr/Bi-100

    图  5  BiOBr和BiOBr/Bi样品的SEM图像:(a) BiOBr;(b) BiOBr/Bi-5;(c) BiOBr/Bi-20;(d) BiOBr/Bi-50;(e) BiOBr/Bi-100

    Figure  5.  SEM images of BiOBr and BiOBr/Bi samples: (a) BiOBr; (b) BiOBr/Bi-5; (c) BiOBr/Bi-20; (d) BiOBr/Bi-50; (e) BiOBr/Bi-100

    图  6  BiOBr、BiOBr/Bi-20和BiOBr/Bi-100的氮气吸附-脱附等温线

    Figure  6.  N2 adsorption and desorption isotherms of BiOBr, BiOBr/Bi-20 and BiOBr/Bi-100

    图  7  BiOBr和BiOBr/Bi样品的紫外-可见-近红外吸收光谱图

    Figure  7.  UV-Vis-NIR absorption spectra of BiOBr and BiOBr/Bi samples

    图  8  负载有BiOBr/Bi-5 ((a)~(c))、BiOBr/Bi-20 ((d)~(f))和 BiOBr/Bi-100 ((g)~(i))的滤膜在不同时刻的接触角照片

    Figure  8.  The contact angle images for filter membranes with BiOBr/Bi-5 ((a)-(c)), BiOBr/Bi-20 ((d)-(f)) and BiOBr/Bi-100 ((g)-(i))

    图  9  负载有BiOBr和BiOBr/Bi样品滤膜的光热驱动水蒸发性能对比:(a)水蒸发量-时间关系图;(b)水蒸发速率对比图;(c)滤膜表面温度-时间关系图;(d) 30 min时各滤膜表面的红外热成像照片

    Figure  9.  Photothemal water evaporation properties for filter membranes with BiOBr and BiOBr/Bi samples: (a) Evaporated water-time diagram; (b) Comparison of water evaporation rates; (c) Surface temperature of filter membranes-time diagram; (d) Infrared thermal images of each membrane surface at 30 min

    图  10  50次循环使用过程中负载BiOBr/Bi-20滤膜的光热驱动水蒸发速率

    Figure  10.  Photothermal driven water evaporation rates for BiOBr/Bi-20 loaded filter membrane during 50 cycles test

    表  1  BiOBr和BiOBr/Bi样品中BiOBr和Bi的晶粒大小

    Table  1.   Grain size of BiOBr and Bi in BiOBr and BiOBr/Bi samples

    BiOBrBiOBr/Bi-5BiOBr/Bi-20BiOBr/Bi-50BiOBr/Bi-100
    BiOBr grain size/nm 27.28 23.12 9.47 - -
    Bi grain size/nm - - 19.52 18.66 17.87
    下载: 导出CSV
  • [1] TAO P, NI G, SONG C, et al. Solar-driven interfacial evaporation[J]. Nature Energy,2018,3:1031-1041. doi: 10.1038/s41560-018-0260-7
    [2] LIU Y, YU S, FENG R, et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation[J]. Advanced Materials,2015,27(17):2768-2774. doi: 10.1002/adma.201500135
    [3] RAZA A, LU J Y, ALZAIM S, et al. Novel receiver-enhancced solar vapor generation: Review and perspectives[J]. Energies,2018,11(1):253.
    [4] ZHENG Z, LI H, ZHANG X, et al. High-absorption solar steam device comprising Au@Bi2MoO6-CDs: Extraordinary desalination and electricity generation[J]. Nano Energy,2020,68:104298. doi: 10.1016/j.nanoen.2019.104298
    [5] ZHU G, XU J, ZHAO W, et al. Constructing black titania with unique nanocage structure for solar desalination[J]. ACS Applied Materials & Interfaces,2016,8(46):31716-31721.
    [6] ZHOU L, TAN Y, JI D, et al. Self-assembly of highly efficient, broad-band plasmonic absorbers for solar steam generation[J]. Science Advances,2016,2(4):1-8.
    [7] CHANG C, CHAO P, LIN K. Flower-like BiOBr decorated stainless steel wire-mesh as immobilized photocatalysts for photocatalytic degradation applications[J]. Applied Surface Science,2019,494:492-500. doi: 10.1016/j.apsusc.2019.07.203
    [8] XIONG X, DING L, WANG Q, et al. Synthesis and photocatalytic activity of BiOBr nanosheets with tunable exposed{010} face[J]. Applied Catalysis: Environmental,2016,188:283-291. doi: 10.1016/j.apcatb.2016.02.018
    [9] ZHANG H, YANG Y, ZHOU Z, et al. Enhanced photocatalytic properties in BiOBr nanosheets with dominantly exposed{102}Facets[J]. Journal of Physical Chemistry C,2014,118(26):14662-14669.
    [10] LIU T, ZHANG Y, SHI Z, et al. BiOBr/Ag/AgBr heterojunctions decorated carbon fiber cloth with broad-spectral photoresponse as filter-membrane-shaped photocatalyst for the efficient purification of flowing wastewater[J]. Journal of Colloid and Interface Science,2021,587:633-643. doi: 10.1016/j.jcis.2020.11.020
    [11] GUO W, QIN Q, GENG L, et al. Morphology-controlled preparation and plasmonenhanced photocatalytic activity of Pt-BiOBr heterostructures[J]. Journal of Hazardous Materials,2016,308:374-385. doi: 10.1016/j.jhazmat.2016.01.077
    [12] CHENG H, HUANG B, WANG P, et al. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants[J]. Chemical Communications,2011,47(25):7054-7056. doi: 10.1039/c1cc11525a
    [13] GAO Z, YAO B, JI L. et al. Effect of reducing agent NaBH4 on photocatalytic properties of Bi/BiOBr/Bi2WO6 composites[J]. Chemistry Select,2019,4(34):10065-10071.
    [14] LIU Z, WANG Q, TAN X, et al. Solvothermal preparation of Bi/Bi2O3 nanoparticles on TiO2 NTs for the enhanced photoelectrocatalytic degradation of pollutants[J]. Journal of Alloys and Compounds,2019,815:152478.
    [15] CAI Z, ZHONG J, LI J, et al. Oxygen vacancies enriched BiOBr with boosted photocatalytic behaviors[J]. Inorganic Chemistry Communications,2021,126:108450. doi: 10.1016/j.inoche.2021.108450
    [16] GAO M, ZHANG D, PU X, et al. Facile hydrothermal synthesis of Bi/BiOBr composites with enhanced visible-light photocatalytic activities for the degradation of rhodamine B[J]. Separation and Purification Technology,2015,154:211-216. doi: 10.1016/j.seppur.2015.09.063
    [17] FU S, ZHU H, HUANG Q, et al. Construction of hierarchical CuBi2O4/Bi/BiOBr ternary heterojunction with Z-scheme mechanism for enhanced broad-spectrum photocatalytic activity[J]. Journal of Alloys and Compounds,2021,878:160372.
    [18] 赵斌, 林琳, 陈超, 等. 二氧化钛/钛酸盐纳米粉体的晶体生长机理研究进展[J]. 无机材料学报, 2013, 28(7):683-690.

    ZHAO Bin, LIN Lin, CHEN Chao, et al. Research progress on crystal growth mechanism of titania/titanate nano-powder materials[J]. Journal of Inorganic Materials,2013,28(7):683-690(in Chinese).
    [19] 宋靖珂, 王学江, 王佳忆, 等. 飘浮型Ag2CrO4-g-C3N4-TiO2/膨胀珍珠岩可见光催化材料除藻性能[J]. 复合材料学报, 2021, 38(6):1914-1921.

    SONG Jingke, WANG Xuejiang, WANG Jiayi, et al. Photocatalytic inactivation of algae using floating visible-light-responsive photocatalyst Ag2CrO4-g-C3N4-TiO2/modified expanded perlite[J]. Acta Materiae Compositae Sinica,2021,38(6):1914-1921(in Chinese).
    [20] CAI L. Preparation of mesoporous TiO2 and Pt-doped TiO2 fibers with collagen fiber as a template and their performance for photocatalytic degradation of black liquor[J]. Journal of the Chinese Ceramic Society,2012,40:1479-1494.
    [21] WU B, CHERN M, LEE H. Size-controllable synthesis and bandgap modulation of single-layered RF-sputtered bismuth nanoparticles[J]. Nanoscale Research Letters,2014,9:249. doi: 10.1186/1556-276X-9-249
    [22] XIA J, YIN S, LI H, et al. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid[J]. Dalton Transactions,2011,40(19):5249-5258. doi: 10.1039/c0dt01511c
    [23] ZHANG W, CHANG Q, XUE C, et al. A gelation-stabilized strategy toward photothermal architecture design for highly efficient solar water evaporation[J]. Solar RRL,2021,5(5):2100113.
    [24] ZHOU X, ZHAO F, GUO Y, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science Advances,2019,5(6):eaaw5484. doi: 10.1126/sciadv.aaw5484
    [25] SUN Y, ZONG X, QU D, et al. Water management by hierarchical structures for highly efficient solar water evaporation[J]. Journal of Materials Chemistry A,2021,9(11):7122-7128. doi: 10.1039/D1TA00113B
    [26] WANG J, LI Y, DENG L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials,2016,29(3):1603730.1-1603730.6.
    [27] PANG Y, ZHANG J, MA R, et al. Solar-thermal water evaporation: A review[J]. ACS Energy Letters,2020,5(2):437-456. doi: 10.1021/acsenergylett.9b02611
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1127
  • HTML全文浏览量:  525
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 修回日期:  2021-08-08
  • 录用日期:  2021-08-21
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回